GCE

Mathematics

Advanced GCE 4726

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 Derive/quote $\mathrm{g}^{\prime}(x)=p /\left(1+x^{2}\right)$
Attempt $\mathrm{f}^{\prime}(x)$ as $a /\left(1+b x^{2}\right)$
Use $x=1 / 2$ to set up a solvable equation in p, leading to at least one solution
Get $p=5 / 4$ only
2 Reasonable attempt at $\mathrm{e}^{2 x}\left(1+2 x+2 x^{2}\right)$
Multiply out their expressions to get all terms up to x^{2}
Get $1+3 x+4 x^{2}$
Use binomial, equate coefficients to get 2 solvable equations in a and n
Reasonable attempt to eliminate a or n
Get $n=9, a=1 / 3$ cwo

B1

M1 Allow any $a, b=2$ or 4

M1
A1 AEEF
M1 3 terms of the form $1+2 x+a x^{2}, a \neq 0$
M1 (3 terms) x (minimum of 2 terms)
A1 cao
Reasonable attempt at binomial, each term
M1 involving a and $n\left(a n=3, a^{2} n(n-1) / 2=4\right)$
M1
A1 cao
SC Reasonable $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$ using product rule (2 terms) M1 Use their expressions to find $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0)$

M1
Get $1+3 x+4 x^{2}$ cao A1
B1
M1 From their expressions
A1

M1
A1 $\sqrt{ }$ Must involve $\sqrt{ } 3$
A1 A.G.

B1 May be quoted
B1 May be quoted (from correct working)
B1 May be quoted

B1 Correct shape in $-1<x \leq 3$ only (allow just top or bottom half)

B1 90° (at $x=3$) (must cross x-axis i.e. symmetry)

B1 Asymptote at $x=-1$ only (allow -1 seen)
B1 $\sqrt{ }$ Correct crossing points; $\pm \sqrt{ }(b / c)$ from their b, c

5 (i) Reasonable attempt at parts
Get $\mathrm{e}^{x}(1-2 x)^{n}-\int \mathrm{e}^{x} \cdot n(1-2 x)^{n-1} .-2 \mathrm{~d} x$
Evidence of limits used in integrated part Tidy to A.G.
(ii) Show any one of $I_{3}=6 I_{2}-1, I_{2}=4 I_{1}-1$, $I_{1}=2 I_{0}-1$
Get $I_{0}\left(=\mathrm{e}^{1 / 2}-1\right)$ or $I_{1}\left(=2 \mathrm{e}^{1 / 2}-3\right)$
Substitute their values back for their I_{3} Get $48 \mathrm{e}^{1 / 2}-79$

6 (i) Reasonable attempt to differentiate $\sinh y=x$ to get $\mathrm{d} y / \mathrm{d} x$ in terms of y Replace $\sinh y$ to A.G.
(ii) Reasonable attempt at chain rule Get $\mathrm{d} y / \mathrm{d} x=a \sinh \left(a \sinh ^{-1} x\right) / \sqrt{ }\left(x^{2}+1\right)$
Reasonable attempt at product/quotient
Get $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ correctly in some form
Substitute in and clearly get A.G.

M1 Leading to second integral
A1 Or $(1-2 x)^{n+1} /(-2(n+1)) \mathrm{e}^{x}$

$$
-\int(1-2 x)^{n+1} /(-2(n+1)) e^{x} d x
$$

M1 Should show ± 1
A1 Allow $I_{n+1}=2(n+1) I_{n}-1$

B1 May be implied
B1
M1 Not involving n
A1

M1 Allow $\pm \cosh y \mathrm{~d} y / \mathrm{d} x=1$
A1 Clearly use $\cosh ^{2}-\sinh ^{2}=1$
SC Attempt to diff. $y=\ln \left(x+\sqrt{ }\left(x^{2}+1\right)\right)$ using chain rule
Clearly tidy to A.G. A1
M1 To give a product
A1
M1 Must involve sinh and cosh
A1 $\sqrt{ }$ From $\mathrm{d} y / \mathrm{d} x=k \sinh \left(a \sinh ^{-1} x\right) / \sqrt{ }\left(x^{2}+1\right)$
A1
SC Write $\sqrt{ }\left(x^{2}+1\right) \mathrm{d} y / \mathrm{d} x=k \sinh \left(a \sinh ^{-1} x\right)$
or similar
Derive the A.G.
B1 $\sqrt{ }$ Any 3(minimum) correct from previous value
B1 Allow one B1 for 5.24 seen if 2 d.p.used

7 (i) Get 5.242, 5.239, 5.237
Get 5.24
(ii) Show reasonable staircase for any region Describe any one of the three cases Describe all three casesB1

B1
(iii) Reasonable attempt to use log/expo. rules M1 Allow derivation either way Clearly get A.G.
Attempt $\mathrm{f}^{\prime}(x)$ and use at least once in correct N-R formula
Get answers that lead to 1.31
(iv) Show $\mathrm{f}^{\prime}(\ln 36)=0$

Explain why N-R would not work

M1
A1 Minimum of 2 answers; allow truncation/rounding to at least $3 \mathrm{~d} . \mathrm{p}$.

B1
B1 Tangent parallel to $O x$ would not meet $O x$ again or divide by 0 gives an error

8 (i) Use correct definition of $\cosh x$
Attempt to cube their definition involving e^{x} and e^{-x} (or $\mathrm{e}^{2 x}$ and e^{x}) Put their 4 terms into LHS and attempt to simplify
Clearly get A.G.
(ii) Rewrite as $k \cosh 3 x=13$

Use ln equivalent on $13 / k$

Get $x=(\pm) 1 / 3 \ln 5$
Replace in $\cosh x$ for u
Use $\mathrm{e}^{a \ln b}=b^{a}$ at least once
Get $1 / 2\left(5^{1 / 3}+5^{-1 / 3}\right)$
9 (i) Attempt integral as $k(2 x+1)^{1.5}$
Get 9
Attempt subtraction of areas Get 3
(ii) Use $r^{2}=x^{2}+y^{2}$ and $x=r \cos \theta, y=r \sin \theta$

Eliminate x and y to produce quadratic equation (=0) in $r($ or $\cos \theta)$
Solve their quadratic to get r in terms of θ
(or vice versa)
Clearly get A.G.
Clearly show $\theta_{1}($ at $B)=\tan ^{-1} 3 / 4$ and $\theta_{2}($ at $A)=\pi$
(iii) Use area $=1 / 2 \int r^{2} \mathrm{~d} \theta$ with correct r Rewrite as $k \operatorname{cosec}^{4}(1 / 2 \theta)$
Equate to their part (i) and tidy Get 24

M1
B1
M1 Must be 4 terms
M1
A1
SC Allow one B1 for correct derivation from $\cosh 3 x=\cosh (2 x+x)$

M1
M1 Allow $\pm \ln$ or $\ln \left(13 / k \pm \sqrt{ }(13 / k)^{2}-1\right)$ for their k or attempt to set up and solve quadratic via exponentials
A1
M1
M1
A1
M1
A1 cao
M1 Their answer - triangle
A1 $\sqrt{ }$ Their answer $-6(>0)$
B1

A1 $\sqrt{ }$
A1 $r>0$ may be assumed

B1

SC Eliminate y to get r in terms of x only M1 Get $r=x+1$

A1
SC Start with $r=1 /(1-\cos \theta)$ and derive cartesian
B1 cwo; ignore limits
M1 Not just quoted
M1 To get $\int=$ some constant
A1 A.G.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

