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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer any three questions.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

• The acceleration due to gravity is denoted by g m s
−2

. Unless otherwise instructed, when a numerical value is
needed, use g = 9.8.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.
• The total number of marks for this paper is 72.

• This document consists of 4 pages. Any blank pages are indicated.
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1 A car travels over a rough surface. The vertical motion of the front suspension is modelled by the

differential equation

d2y

dt2
+ 25y = 20 cos 5t,

where y is the vertical displacement of the top of the suspension and t is time.

(i) Find the general solution. [8]

Initially y = 1 and
dy

dt
= 0.

(ii) Find the solution subject to these conditions. [4]

(iii) Sketch the solution curve for t ≥ 0. [4]

A refined model of the motion of the suspension is given by

d2y

dt2
+ 2

dy

dt
+ 25y = 20 cos 5t.

(iv) Verify that y = 2 sin 5t is a particular integral for this differential equation. Hence find the general

solution. [6]

(v) Compare the behaviour of the suspension predicted by the two models. [2]

2 The differential equation

x
dy

dx
+ 3y =

sin x

x

is to be solved for x > 0.

(i) Find the general solution for y in terms of x. [9]

As x → 0, y tends to a finite limit.

(ii) Use the approximations sin x ≈ x −
1

6
x3 and cos x ≈ 1 −

1

2
x2 (both valid for small x) to find the

value of the arbitrary constant and the limiting value of y as x → 0. Hence state the particular

solution. [6]

(iii) Show that, when y = 0, tan x = x. [2]

An alternative method of investigating the behaviour of y for small x is to use the approximation

sin x ≈ x −
1

6
x3 in the differential equation, giving

x
dy

dx
+ 3y =

x −
1

6
x3

x
.

(iv) Solve this differential equation and, given that y tends to a finite limit as x → 0, show that the

value of the limit is the same as that found in part (ii). [7]
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3 (a) An electric circuit has an inductor and a resistor in series with an alternating power source.

The circuit is switched on and after t seconds the current is I amps. The current satisfies the

differential equation

2
dI

dt
+ 4I = 3 cos 2t.

(i) Find the complementary function and a particular integral. Hence state the general solution

for I in terms of t. [8]

Initially the current is zero.

(ii) Find the particular solution. [2]

(iii) Calculate the amplitude of the current for large values of t. Sketch the solution curve for

large values of t. [4]

(b) The displacement, y, of a particle at time t satisfies the differential equation

dy

dt
= 2 − 2y + e

−t
.

You are not required to solve this differential equation.

The particle initially has displacement zero. The displacement has only one stationary value,

which is where y =
9

8
. Also the velocity of the particle tends to zero as t → ∞.

(i) Without solving the differential equation, use it to find

(A) the gradient of the solution curve when t = 0; [2]

(B) the value of t at the stationary value of y; [3]

(C) the limit of y as t → ∞. [2]

(ii) Hence sketch the solution curve for t ≥ 0, illustrating these results. [3]

4 The simultaneous differential equations

dx

dt
= 7x + 6y + 2e

−3t

dy

dt
= −12x − 10y + 5 sin t

are to be solved for t ≥ 0.

(i) Show that

d2x

dt2
+ 3

dx

dt
+ 2x = 14e

−3t
+ 30 sin t. [5]

(ii) Show that this differential equation has a particular integral of the form x = ae−3t
− 9 cos t + 3 sin t,

where a is a constant to be determined.

Hence find the general solution for x in terms of t. [8]

(iii) Find the corresponding general solution for y. [4]

(iv) Show that, for large values of t, x = y when tan t ≈ k, where k is a constant to be determined. [4]

(v) Find the ratio of the amplitudes of y and x for large values of t. [3]
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