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INSTRUCTIONS TO CANDIDATES

• Write your name in capital letters, your Centre Number and Candidate Number in the spaces 
provided on the Answer Booklet.

• Read each question carefully and make sure you know what you have to do before starting 
your answer.

• Answer all the questions.

• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks for each question is given in brackets [  ] at the end of each question or 
part question.

• The total number of marks for this paper is 72.

• You are advised that an answer may receive no marks unless you show sufficient detail of the 
working to indicate that a correct method is being used.
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Section A (36 marks)

1  The equation f(x) = 0 is known to have a single root in the interval (3, 3.5). Given that f(3) = 0.5 and 
f(3.5) = –0.8, estimate the root using linear interpolation. 

 State the maximum possible error in this estimate. [6]

2 The function f(x) has the values shown in the table. The value of k is to be determined.

x 1 3 5 7 9

f(x) 2 1 5 k 2

 Use a difference table to obtain the value of k, assuming that f(x) is a cubic. [6]

3 The function f(x) = 1 + 3x is to be differentiated numerically.

  Use the central difference method with h = 0.2 to estimate the derivative at x = 2. Obtain further 
estimates with h = 0.1 and h = 0.05.

  By considering the differences between successive estimates, find the value of the derivative to an 
accuracy of 3 decimal places. [8]

4 Show that a Newton-Raphson iteration to find the cube root of 25 is

xr + 1 = xr – 
xr

3 – 25
–––––––

3xr
2 .

  Perform three steps of this iteration, beginning with x0 = 4. Show, by considering the differences 
between successive iterates, that the convergence is faster than first order. [8]

5 (i) Find sin 86° – sin 85° to the accuracy given by your calculator. [1]

 (ii) A simple spreadsheet works to an accuracy of 6 significant figures. All intermediate answers used 
in calculations are rounded to 6 significant figures.

  Write down the values of sin 86° and sin 85° as given by this spreadsheet. Hence find the value the 
spreadsheet gives for sin 86° – sin 85°. [3]

 (iii)  You are now given that sin 86° – sin 85° = 2 cos 85.5° sin 0.5°. Find the value the spreadsheet 
gives for this expression. [2]

 (iv)  Use your working from parts (ii) and (iii) to explain how two expressions that are mathematically 
identical can nevertheless evaluate differently. [2]
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Section B (36 marks)

6 The integral �
1

3

1 + sin x dx, where x is in radians, is to be evaluated numerically.

 (i) Copy and complete the following table. [7]

h Mid-point rule estimate Trapezium rule estimate

2 M1 = 2.763 547 T1 =

1 M2 = T2 =

0.5 M4 = T4 =

 (ii) Show that the differences between successive mid-point rule estimates reduce by a factor of 
about 4. 

  State a result about the differences between successive trapezium rule estimates. [4]

 (iii) Now let S1 = 1–
3

(2M1 + T1), with S2 and S4 defined similarly.

  Calculate S1, S2, S4 and the differences S2 – S1, S4 – S2. By considering these differences, give the 
value of the integral to the accuracy that appears justified. [7]

7 The equation x2 = 4 + 1–x  has three roots. 

 (i)  Show graphically that the equation has exactly one root for x > 0. Find the integer a such that this 
positive root lies in the interval (a, a + 1).

  Use the fixed-point iteration 

xr + 1 = √(4 + 1––xr
)        (*)

  to determine the positive root correct to 4 decimal places. [7]

 (ii)  The equation also has two negative roots. Without doing any calculations, explain why the iteration 
(*) cannot be used to find these negative roots. 

  Use the fixed-point iteration 

xr + 1 = – √(4 + 1––xr
)        (**)

  to find a negative root near to x = –2 correct to 4 decimal places. [5]

 (iii)  The third root of the equation lies in the interval (–1, 0). Show that the iteration (**) used in part 
(ii) will not converge to this third root. Use another fixed point iteration to find the third root 
correct to 4 decimal places. [6]
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