RECOGNISING ACHIEVEMENT

ADVANCED GCE UNIT MATHEMATICS

Further Pure Mathematics 2

THURSDAY 7 JUNE 2007

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

1 The equation of a curve, in polar coordinates, is

$$
r=2 \sin 3 \theta, \quad \text { for } 0 \leqslant \theta \leqslant \frac{1}{3} \pi
$$

Find the exact area of the region enclosed by the curve between $\theta=0$ and $\theta=\frac{1}{3} \pi$.

2 (i) Given that $\mathrm{f}(x)=\sin \left(2 x+\frac{1}{4} \pi\right)$, show that $\mathrm{f}(x)=\frac{1}{2} \sqrt{2}(\sin 2 x+\cos 2 x)$.
(ii) Hence find the first four terms of the Maclaurin series for $\mathrm{f}(x)$. [You may use appropriate results given in the List of Formulae.]

3 It is given that $\mathrm{f}(x)=\frac{x^{2}+9 x}{(x-1)\left(x^{2}+9\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence find $\int \mathrm{f}(x) \mathrm{d} x$.

4 (i) Given that

$$
y=x \sqrt{1-x^{2}}-\cos ^{-1} x
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in a simplified form.
(ii) Hence, or otherwise, find the exact value of $\int_{0}^{1} 2 \sqrt{1-x^{2}} \mathrm{~d} x$.

5 It is given that, for non-negative integers n,

$$
I_{n}=\int_{1}^{\mathrm{e}}(\ln x)^{n} \mathrm{~d} x
$$

(i) Show that, for $n \geqslant 1$,

$$
\begin{equation*}
I_{n}=\mathrm{e}-n I_{n-1} . \tag{4}
\end{equation*}
$$

(ii) Find I_{3} in terms of e.

The diagram shows the curve with equation $y=\frac{1}{x^{2}}$ for $x>0$, together with a set of n rectangles of unit width, starting at $x=1$.
(i) By considering the areas of these rectangles, explain why

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}>\int_{1}^{n+1} \frac{1}{x^{2}} \mathrm{~d} x \tag{2}
\end{equation*}
$$

(ii) By considering the areas of another set of rectangles, explain why

$$
\begin{equation*}
\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots+\frac{1}{n^{2}}<\int_{1}^{n} \frac{1}{x^{2}} d x \tag{3}
\end{equation*}
$$

(iii) Hence show that

$$
\begin{equation*}
1-\frac{1}{n+1}<\sum_{r=1}^{n} \frac{1}{r^{2}}<2-\frac{1}{n} \tag{4}
\end{equation*}
$$

(iv) Hence give bounds between which $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ lies.

7 (i) Using the definitions of hyperbolic functions in terms of exponentials, prove that

$$
\begin{equation*}
\cosh x \cosh y-\sinh x \sinh y=\cosh (x-y) \tag{4}
\end{equation*}
$$

(ii) Given that $\cosh x \cosh y=9$ and $\sinh x \sinh y=8$, show that $x=y$.
(iii) Hence find the values of x and y which satisfy the equations given in part (ii), giving the answers in logarithmic form.

8 The iteration $x_{n+1}=\frac{1}{\left(x_{n}+2\right)^{2}}$, with $x_{1}=0.3$, is to be used to find the real root, α, of the equation $x(x+2)^{2}=1$.
(i) Find the value of α, correct to 4 decimal places. You should show the result of each step of the iteration process.
(ii) Given that $\mathrm{f}(x)=\frac{1}{(x+2)^{2}}$, show that $\mathrm{f}^{\prime}(\alpha) \neq 0$.
(iii) The difference, δ_{r}, between successive approximations is given by $\delta_{r}=x_{r+1}-x_{r}$. Find δ_{3}.
(iv) Given that $\delta_{r+1} \approx \mathrm{f}^{\prime}(\alpha) \delta_{r}$, find an estimate for δ_{10}.

9 It is given that the equation of a curve is

$$
y=\frac{x^{2}-2 a x}{x-a}
$$

where a is a positive constant.
(i) Find the equations of the asymptotes of the curve.
(ii) Show that y takes all real values.
(iii) Sketch the curve $y=\frac{x^{2}-2 a x}{x-a}$.

