GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	(i)			B1	A correct bipartite graph	[1]
	(ii)			B1	A second bipartite graph showing the incomplete matching correctly No augmentations made, even if in pencil. Ignore the addition of an X vertex though.	[1]
	(iii)	$\begin{array}{\|l\|} \hline H-P-G-Q \\ \\ \text { Axe handle = Prof Mulberry } \\ \text { Broomstick = Miss Olive } \\ \text { Drainpipe = Mrs Lemon } \\ \text { Fence post }=\text { Mr Nutmeg } \\ \text { Golf club }=\text { Rev Quince } \\ \text { Hammer }=\text { Capt Peach } \end{array}$	$\begin{aligned} & A=M \\ & B=O \\ & D=L \\ & F=N \\ & G=Q \\ & H=P \end{aligned}$	B1 B1	This path in any reasonable form or in reverse. Accept $X-H-P-G-Q$ Not any longer path from H to Q This complete matching written down (use initials of surnames if ambiguous, eg Rev Pineapple is interpreted as $P=$ Capt Peach)	[2]
	(iv)	$\begin{aligned} & \text { Axe handle = Rev Quince } \\ & \text { Broomstick = Prof Mulberry } \\ & \text { Drainpipe = Mr Nutmeg } \\ & \text { Fence post }=\text { Miss Olive } \\ & \text { Golf club }=\text { Capt Peach } \\ & \text { Hammer }=\text { Mrs Lemon } \end{aligned}$	$\begin{gathered} \hline A=Q \\ B=M \\ D=N \\ F=O \\ G=P \\ H=L \end{gathered}$	M1 A1	A different complete matching in any form A valid complete matching in which none of the suspects uses the same weapon as in their solution to (iii)	[2]
Total $=$						6

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& (i) \& In each game, whatever combination of strategies is chosen, the total number of points won is zero \& B1 \& Points won by Euan equals points lost by Wai Mai, and vice versa, in every case \& [1] \\
\hline \& (ii) \& -2 \& B1 \& Loses 2 \& [1] \\
\hline \& (iii) \& \begin{tabular}{l}
\(Z\) is dominated by \(Y\) \\
In each row she loses more by choosing \(Z\) than \(Y\) \(-3<5,-4<3,-2<5\) and \(1<2\) (or equivalent)
\end{tabular} \& \& \begin{tabular}{l}
Idea of dominance by \(Y\) \\
Four valid comparisons and a convincing explanation (or equivalent in words)
\end{tabular} \& [2] \\
\hline \& (iv) \& \begin{tabular}{l}
 \\
Play-safe for Euan is \(D\) Play-safe for Wai Mai is \(Y\) \\
Game is stable, since row maximin \(=\) col minimax, \(-2=-2\)
\end{tabular} \& M1 \& \begin{tabular}{l}
Determining row minima and column maxima, or equivalent (may be implied from both \(D\) and \(Y\) stated) \\
\(D\), stated (not just identified in table) \(Y\), stated (not just identified in table) \\
Stable, with a valid reason attempted (numerical or in words) (www)
\end{tabular} \& [4] \\
\hline \& (v) \& \begin{tabular}{l}
A: \(-2 p+5(1-p)=5-7 p\) \\
B: \(\quad p+3(1-p)=3-2 p\) \\
C: \(-3 p+5(1-p)=5-8 p\) \\
D: \(5 p+2(1-p)=2+3 p\) \\
(note: leaving \(D X\) as 3 gives \(D: 2-5 p=\) M1A0A0)
\end{tabular} \& M1
A1
A1 \& Any one correct (or negative of correct), simplified or not All four correct (or negative of correct) and simplified All four correct and simplified \& [3] \\
\hline \& (vi) \&
\[
\begin{aligned}
\& 2+3 p=3-2 p \\
\& \Rightarrow p=0.2
\end{aligned}
\] \& M1
A1

M1

A1 \& | Graph paper used with sensible scales |
| :--- |
| Their equations plotted correctly |
| Solving correct pair, or from graph 0.2 , cao, from correct equations used (algebraically or from graph) (www) | \& [2]

\hline \& \& \multicolumn{3}{|r|}{Total =} \& 15

\hline
\end{tabular}

ANSWERED ON INSERT

5	(i)	$\begin{aligned} & 21+36+7+18 \\ & =82 \end{aligned}$	M1	Evidence of using the correct cut (eg $21(\pm 23)+36+7+18$ seen $)$ 82	[2]
	(ii)	At most 17 can leave C so there cannot be as much as 20 or 18 entering it At most 17 can enter E so there cannot be $7+18$ $=25$ leaving it Maximum that can flow in arc $H T$ is 33 Flow along arc $H G=0$	B1 B1 B1 B1	$17<$ both 20 and 18 (NOT $17<38$) $17<7+18$ 0	[2] [2]
	(iii)	A diagram showing a flow of 58 in which amount in equals amount out at each vertex, apart from S and T Arcs $C E, F H$ and $G T$ are saturated and other arc capacities are not exceeded Cut $X=\{S, A, B, C, D, F, G\}, Y=\{E, H, T\}$ Or cut through $G T, G H, F H, E F$ and $C E$	M1 A1 B1	Assume that "blanks" mean 0 or full to capacity, provided consistent This cut presented in any form (accept it drawn on diagram)	[3]
	(iv)	Substantially correct attempt in which excess capacities and potential backflows marked correctly on arcs CE, FH and GT Their excess capacities and potential backflows marked correctly on arcs out of S and arcs into T and on $H G$	M1 A1	Assume that blanks mean 0 Accept all directions swapped Check directions on $\underline{H G}$ carefully If no flow in (iii), or ambiguous, then any valid flow >0 labelled correctly gets M1, but must also be a flow of 58 to get A1	[2]
	(v)	Feasible route(s) written that send an additional 2 through system (or more on follow through) All route(s) valid with an additional 2 along GH	M1 A1	Routes must be written out properly eg route $S B F G H T$ by 2	[2]
	(vi)	Their flow from part (iii) augmented by their routes in part (v) No more can flow across the cut $X=\{S, C\}, Y=\{A, B, D, E, F, G, H, T\}$	M1 A1	Follow through if possible Any reasonable explanation	[2]
				Total =	15

PARTS (i), (ii) AND (iii) ANSWERED ON INSERT

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

