GCE

Mathematics (MEI)

Advanced GCE 4773

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk
1.

(i) $\mathrm{u}_{\mathrm{n}}=1.05 \mathrm{u}_{\mathrm{n}-1}-60$	M1 A2
$\text { (ii) } \begin{aligned} & \mathrm{u}_{\mathrm{n}}=1000 \times 1.05^{\mathrm{n}}-60 \frac{\left(1.05^{\mathrm{n}}-1\right)}{0.05} \\ &=1200-200 \times 1.05^{\mathrm{n}} \\ & \text { or } \\ & \mathrm{u}_{\mathrm{n}}=\lambda 1.05^{\mathrm{n}}+\mu \\ & 1000=\lambda+\mu \\ & 990=1.05 \lambda+\mu, \text { etc } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \\ & \text { A1 } \end{aligned}$
(iii) $\operatorname{int}(\log (6) / \log (1.05))=36$ years (or spreadsheet)	M1 A1
(iv)	
1000	
1025	M1
990.625	A1
1015.391	A1
980.7754	
$\begin{aligned} & 1005.295 \\ & \text { etc. } \end{aligned}$	
(v) 37 years (+6 months OK)	B1 cao
(vi)	
1000	
970	M1
989.25	A1
959.25	A1 interest OK
977.9625	A1
$\begin{aligned} & 947.9625 \\ & \text { etc. } \end{aligned}$	
(vii) 35 years	B1 cao

2.

3.
(i) $\quad \begin{array}{ll}\text { Min } \\ \mathrm{st} & \left.\begin{array}{l}2 \times 11+3 \times 12+7 \times 13+\times 21+8 \times 22+4 \times 23 \\ \end{array}\right)\end{array}$

B1
x21+x22+x23=10
$\times 11+\times 21<7$
$\times 12+\times 22<7$
$x 13+\times 23<7$
end
(ii) Objective value: 55.00000

Variable Value Reduced Cost
X11 $3.000000 \quad 0.000000$
$\begin{array}{lll}\text { X12 } 7.000000 & 0.000000\end{array}$
X13 0.000000 3.000000
X21 4.000000
0.000000

X22 0.000000
6.000000

X23 6.000000
0.000000

3 containers from S1 to D1
7 containers from S1 to D2
4 containers from S2 to D1
6 containers from S2 to D3
total cost $=55$
(iii) Min $2 \mathrm{y} 11+3 \mathrm{y} 12+9 \mathrm{y} 13+\mathrm{y} 14+4 \mathrm{y} 21+7 \mathrm{y} 22+2 \mathrm{y} 23$
$+5 y 24+y 31+5 y 32+3 y 33+6 y 34$
st $\quad \mathrm{y} 11+\mathrm{y} 12+\mathrm{y} 13+\mathrm{y} 14=7$
$\mathrm{y} 21+\mathrm{y} 22+\mathrm{y} 23+\mathrm{y} 24=7$
$\mathrm{y} 31+\mathrm{y} 32+\mathrm{y} 33+\mathrm{y} 34=6$
$\mathrm{y} 11+\mathrm{y} 21+\mathrm{y} 31=7$
$\mathrm{y} 12+\mathrm{y} 22+\mathrm{y} 32=4$
$y 13+y 23+y 33=6$
$y 14+y 24+y 34=3$
end
(iv) Objective value: 37.00000

Variable Value Reduced cost
Y11 0.000000 2.000000
$\begin{array}{lll}\text { Y12 } 4.000000 & 0.000000\end{array}$
$\begin{array}{lll}\text { Y13 } 0.000000 & 11.00000\end{array}$
$\begin{array}{lll}\text { Y14 } 3.000000 & 0.000000\end{array}$
Y21 1.000000 0.000000
Y22 0.000000 0.000000
$\begin{array}{lll}\text { Y23 } 6.000000 & 0.000000\end{array}$
$\begin{array}{lll}\text { Y24 } 0.000000 & 0.000000\end{array}$
Y31 $6.000000 \quad 0.000000$
Y32 0.000000 1.000000
$\begin{array}{lll}\text { Y33 } 0.000000 & 4.000000\end{array}$
$\begin{array}{lll}\text { Y34 } 0.000000 & 4.000000\end{array}$
4 containers from D1 to C2
3 containers from D1 to C4
1 container from D2 to C1
6 containers from D2 to C3
6 containers from D3 to C1
total cost $=37$

4.
(i) e.g. = lookup(rand(),A1:A3,B1:B3) with

A B
100
$2 \quad 0.1 \quad 1$
$3 \quad 0.6 \quad 2$
(ii) Many approaches possible, but all must allow for 3 applications of part (i)
Offspring from generation 0
Conditional offspring from generation 1(s)
Output
(iii) Theoretical probabilities (Galton-Watson branching):

| 0 | 1 | 2 | 3 | 4 | M1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}0.154 & 0.29 & 0.332 & 0.16 & 0.064\end{array}$
(iv) Two independent runs.

Sum the numbers in the two second generations.
(or nested "IF"s)
$0,1,2,3,4,5,6,7,8$

M1 A1

B1
B1

B2
B1
B1 M1A1 M1A1
B1

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

