Mathematics

Advanced GCE A2 7890-2
Advanced Subsidiary GCE AS 3890-2

Mark Schemes for the Units

June 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)
Advanced Subsidiary GCE Mathematics (3890)
Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Mechanics 1	31
4728	Mechanics 2	37
4729	Mechanics 3 Pure Mathematics 3	43
4730	Mechanics 4	47
4731	Probability \& Statistics 1	53
4732	Probability \& Statistics 3	59
4733	Probability \& Statistics 4	65
4734	Decision Mathematics 1	69
4735	Decision Mathematics 2	75
4736	Grade Thresholds	79
4737		85
4	F	

Mark Scheme 4721 June 2007

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \left(4 x^{2}+20 x+25\right)-\left(x^{2}-6 x+9\right) \\
\& =3 x^{2}+26 x+16
\end{aligned}
\] \\
Alternative method using difference of two squares:
\[
\begin{aligned}
\& (2 x+5+(x-3))(2 x+5-(x-3)) \\
\& =(3 x+2)(x+8) \\
\& =3 x^{2}+26 x+16
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 3
\end{tabular} \& \begin{tabular}{l}
Square one bracket to give an expression of the form \(a x^{2}+b x+c\) \((a \neq 0, b \neq 0, c \neq 0)\) \\
One squared bracket fully correct \\
All 3 terms of final answer correct \\
M1 2 brackets with same terms but different signs \\
A1 One bracket correctly simplified \\
A1 All 3 terms of final answer correct
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2(a)(i)
\] \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Stretch \\
Scale factor 8 in y direction or scale factor \(1 / 2\) in x direction
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 2 \\
B1 1 \\
B1 \\
B1 2 \\
5
\end{tabular} \& \begin{tabular}{l}
Excellent curve for \(\frac{1}{x}\) in either quadrant \\
Excellent curve for \(\frac{1}{x}\) in other quadrant \\
SR B1 Reasonably correct curves in \(1^{\text {st }}\) and \(3^{\text {rd }}\) quadrants \\
Correct graph, minimum point at origin, symmetrical
\end{tabular} \\
\hline 3 (i)

(ii) \& \[
$$
\begin{aligned}
& 3 \sqrt{20} \text { or } 3 \sqrt{2} \sqrt{5} \times \sqrt{2} \text { or } \sqrt{180} \\
& \text { or } \sqrt{90} \times \sqrt{2} \\
& =6 \sqrt{5} \\
& 10 \sqrt{5}+5 \sqrt{5} \\
& =15 \sqrt{5}
\end{aligned}
$$

\] \& | A1 2 |
| :--- |
| M1 |
| B1 |
| A1 3 | \& | Correctly simplified answer |
| :--- |
| Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified cao |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
4 \text { (i) }
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& (-4)^{2}-4 \times k \times k \\
\& =16-4 k^{2} \\
\& 16-4 k^{2}=0 \\
\& k^{2}=4 \\
\& k=2 \\
\& \text { or } k=-2
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 2 \\
M1 \\
B1 \\
B1 3 \\
5
\end{tabular} \& \begin{tabular}{l}
Uses \(b^{2}-4 a c\) (involving \(k\)) \(16-4 k^{2}\) \\
Attempts \(b^{2}-4 a c=0\) (involving \(k\)) or attempts to complete square (involving k)
\end{tabular} \\
\hline 5 (i)

(ii) \& \& \begin{tabular}{l}
A1 2

M1

M1

A1

A1 4

6

 \&

Expression for length of enclosure in terms of x Correctly shows that area $=20 x-2 x^{2}$ AG

Differentiates area expression

Uses $\frac{d y}{d x}=0$
\end{tabular}

\hline 6 \& \[
$$
\begin{aligned}
& \text { Let } y=(x+2)^{2} \\
& y^{2}+5 y-6=0 \\
& (y+6)(y-1)=0 \\
& y=-6 \text { or } y=1 \\
& (x+2)^{2}=1 \\
& x=-1 \\
& \text { or } x=-3
\end{aligned}
$$

\] \& | A1 |
| :--- |
| M1 |
| A1 |
| A1 6 |
| 6 | \& | Substitute for $(x+2)^{2}$ to get $y^{2}+5 y-6(=0)$ |
| :--- |
| Correct method to find roots Both values for y correct |
| Attempt to work out x |
| One correct value |
| Second correct value and no extra real values |

\hline | $7 \text { (a) }$ |
| :--- |
(b)	\&	$\begin{aligned} & \mathrm{f}(x)=x+3 x^{-1} \\ & \mathrm{f}^{\prime}(x)=1-3 x^{-2} \end{aligned}$ $\frac{d y}{d x}=\frac{5}{2} x^{\frac{3}{2}}$	
When $\begin{aligned} x=4, \frac{d y}{d x} & =\frac{5}{2} \sqrt{4^{3}} \\ & =20 \end{aligned}$	\&	M1	
:---	:---		
A1			
A1			
A1	4		
M1			
B1			
B1			
M1			
A1	5		
	9	\&	Attempt to differentiate
:---			
First term correct $x^{-2} \text { soi www }$			
Fully correct answer			
Use of differentiation to find gradient $\begin{aligned} & \frac{5}{2} x^{\mathrm{c}} \\ & \mathrm{kx} \\ & \sqrt{\frac{3}{2}} \\ & \sqrt{4^{3}} \text { soi } \end{aligned}$			
SR If 0 scored for first 3 marks, award B1 if $\sqrt{4^{n}}$ correctly evaluated.	 		

\hline
\end{tabular}

10 (i)	$\begin{aligned} & (3 x+1)(x-5)=0 \\ & x=\frac{-1}{3} \text { or } x=5 \end{aligned}$	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct SR B1 for $\mathrm{x}=5$ spotted www
(ii)		B1	Positive quadratic (must be reasonably symmetrical)
		B1 B1 ft 3	y intercept correct both x intercepts correct
	$\frac{d y}{d x}=6 x-14$	M1*	Use of differentiation to find gradient of curve
(iii)	$\begin{aligned} & 6 x-14=4 \\ & x=3 \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \end{aligned}$	Equating their gradient expression to 4
	On curve, when $\mathrm{x}=3, \mathrm{y}=-20$	A1 ft	Finding y co ordinate for their x value
	$\begin{aligned} & -20=(4 \times 3)+c \\ & c=-32 \end{aligned}$	M1dep $\text { A1 } 6$	N.B. dependent on both previous M marks
	Alternative method: $3 x^{2}-14 x-5=4 x+c$	M1	Equate curve and line (or substitute for x)
	$3 x^{2}-18 x-5-c=0$ has one solution		Statement that only one solution for a tangent (may be implied by next line)
	$b^{2}-4 a c=0$		Use of discriminant $=0$
	$(-18)^{2}-(4 \times 3 \times(-5-c))=0$		Attempt to use a, b, c from their equation
		A1	Correct equation
		A1	$\mathrm{c}=-32$

Mark Scheme 4722
 June 2007

1 (i) $u_{2}=12$
$u_{3}=9.6, u_{4}=7.68$ (or any exact equivs)
(ii) $\quad S_{20}=\frac{15\left(1-0.8^{20}\right)}{1-0.8}$

$$
=74.1
$$

$\left|\begin{array}{ll}\mathrm{B} 1 & \\ \mathrm{~B} 1 \sqrt{ } & \mathbf{2} \\ \mathrm{M} 1 & \\ \mathrm{~A} 1 & \\ \mathrm{~A} 1 & \mathbf{3} \\ \text { M1 } & \\ \text { A2 } & \\ & \boxed{\mathbf{5}}\end{array}\right|$

State $u_{2}=12$
Correct u_{3} and u_{4} from their u_{2}
Attempt use of $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$, with $n=20$ or 19
Obtain correct unsimplified expression
Obtain 74.1 or better
List all 20 terms of GP
Obtain 74.1

$$
=x^{4}+8 x^{2}+24+\frac{32}{x^{2}}+\frac{16}{x^{4}} \text { (or equiv) }
$$

$8 \quad$ (i) $\frac{1}{2} \times A B^{2} \times 0.9=16.2$

$$
A B^{2}=36 \Rightarrow A B=6
$$

(ii) $\frac{1}{2} \times 6 \times A C \times \sin 0.9=32.4$
$A C=13.8 \mathrm{~cm}$
(iii) $B C^{2}=6^{2}+13.8^{2}-2 \times 6 \times 13.8 \times \cos 0.9$

Hence $B C=11.1 \mathrm{~cm}$
$B D=6 \times 0.9=5.4 \mathrm{~cm}$
Hence perimeter $=11.1+5.4+(13.8-6)$

$$
=24.3 \mathrm{~cm}
$$

(i) (a) $\mathrm{f}(-1)=-1+6-1-4=0$
(b) $x=-1$
$\mathrm{f}(x)=(x+1)\left(x^{2}+5 x-4\right)$
$x=\frac{-5 \pm \sqrt{25+16}}{2}$
$x=\frac{1}{2}(-5 \pm \sqrt{41})$
(ii) (a) $\log _{2}(x+3)^{2}+\log _{2} x-\log _{2}(4 x+2)=1$
$\log _{2}\left(\frac{(x+3)^{2} x}{4 x+2}\right)=1$
$\frac{(x+3)^{2} x}{4 x+2}=2$
$\left(x^{2}+6 x+9\right) x=8 x+4$
$x^{3}+6 x^{2}+x-4=0$
(b) $x>0$, otherwise $\log _{2} x$ is undefined $x=\frac{1}{2}(-5+\sqrt{41})$

Use $\left(\frac{1}{2}\right) r^{2} \theta=16.2$
Confirm $A B=6 \mathrm{~cm}$ (or verify $1 / 2 \times 6^{2} \times 0.9=$

Use $\Delta=\frac{1}{2} b c \sin A$, or equiv
Equate attempt at area to 32.4
Obtain $A C=13.8 \mathrm{~cm}$, or better
Attempt use of correct cosine formula in $\triangle A B C$
Correct unsimplified equation, from their $A C$
Obtain $B C=11.1 \mathrm{~cm}$, or anything that rounds to this
State $B D=5.4 \mathrm{~cm}$ (seen anywhere in question)
Attempt perimeter of region $B C D$
Obtain 24.3 cm , or anything that rounds to this

B1 $\quad \mathbf{1}$

Confirm $\mathrm{f}(-1)=0$, through any method
State $x=-1$ at any point
Attempt complete division by $(x+1)$, or equiv
Obtain $x^{2}+5 x+k$
Obtain completely correct quotient
Attempt use of quadratic formula, or equiv, find
roots
Obtain $\frac{1}{2}(-5 \pm \sqrt{41})$

State or imply that $2 \log (x+3)=\log (x+3)^{2}$
Add or subtract two, or more, of their algebraic logs correctly

Obtain correct equation (or any equivalent, with single term on each side)

Use $\log _{2} a=1 \Rightarrow a=2$ at any point

Confirm given equation correctly
State or imply that $\log x$ only defined for $x>0$
State $x=\frac{1}{2}(-5+\sqrt{41})$ (or $\mathrm{x}=0.7$) only, following their
single positive root in (i)(b)

Mark Scheme 4723
June 2007

1 (i) Attempt use of product rule
Obtain $3 x^{2}(x+1)^{5}+5 x^{3}(x+1)^{4}$
A
[Or: (following complete expansion and differentiation term by term)
Obtain $8 x^{7}+35 x^{6}+60 x^{5}+50 x^{4}+20 x^{3}+3 x^{2} \quad$ B2 allow B1 if one term incorrect]
(ii) Obtain derivative of form $k x^{3}\left(3 x^{4}+1\right)^{n}$

Obtain derivative of form $k x^{3}\left(3 x^{4}+1\right)^{-\frac{1}{2}}$
Obtain correct $6 x^{3}\left(3 x^{4}+1\right)^{-\frac{1}{2}}$ M1

2 Identify critical value $x=2$
Attempt process for determining both
critical values
Obtain $\frac{1}{3}$ and 2
Attempt process for solving inequality
Obtain $\frac{1}{3}<x<2$

3 (i) Attempt correct process for composition
Obtain (16 and hence) 7
(ii) Attempt correct process for finding inverse

Obtain $(x-3)^{2}$
(iii) Sketch (more or less) correct $y=\mathrm{f}(x)$

Sketch (more or less) correct $y=\mathrm{f}^{-1}(x)$
State reflection in line $y=x$

B1
M1
A1
M1 table, sketch ...;
implied by plausible answer
A1 5

M1 numerical or algebraic
A1 2
M1 maybe in terms of y so far
A1 2 or equiv; in terms of x, not y
B1 with 3 indicated or clearly implied on y-axis, correct curvature, no maximum point
B1 right hand half of parabola only
B1 $\mathbf{3}$ or (explicit) equiv; independent of earlier marks

4 (i) Obtain integral of form $k(2 x+1)^{\frac{4}{3}}$

Obtain correct $\frac{3}{8}(2 x+1)^{\frac{4}{3}}$
Substitute limits in expression of form $(2 x+1)^{n}$
and subtract the correct way round
Obtain 30
(ii) Attempt evaluation of $k\left(y_{0}+4 y_{1}+y_{2}\right)$

Identify k as $\frac{1}{3} \times 6.5$
Obtain 29.6
[SR: (using Simpson's rule with 4 strips)
Obtain $\frac{1}{3} \times 3.25(1+4 \times \sqrt[3]{7.5}+2 \times \sqrt[3]{14}+4 \times \sqrt[3]{20.5}+3)$
and hence 29.9

M1 or equiv using substitution;
any constant k
A1 or equiv

M1 using adjusted limits if subn used
A1 4

M1
A1
A1 3 or greater accuracy ($29.554566 \ldots$)

B1
or greater accuracy (29.897...)]

5 (i) State $\mathrm{e}^{-0.04 t}=0.5$
Attempt solution of equation of form $\mathrm{e}^{-0.04 t}=k$
Obtain 17
(ii) Differentiate to obtain form $k \mathrm{e}^{-0.04 t}$

Obtain (\pm) $9.6 \mathrm{e}^{-0.04 t}$
Equate attempt at first derivative to $(\pm) 2.1$ and attempt solution
Obtain 38

B1 or equiv
M1 using sound process; maybe implied
A1 3 or greater accuracy ($17.328 \ldots$)
*M1 constant k different from 240
A1 or (unsimplified) equiv

M1 dep *M; method maybe implied
A1 4 or greater accuracy (37.9956...)

6 (i) Obtain integral of form $k_{1} \mathrm{e}^{2 x}+k_{2} x^{2}$
Obtain correct $3 \mathrm{e}^{2 x}+\frac{1}{2} x^{2}$
Obtain $3 \mathrm{e}^{2 a}+\frac{1}{2} a^{2}-3$
Equate definite integral to 42 and attempt rearrangement
Confirm $\quad a=\frac{1}{2} \ln \left(15-\frac{1}{6} a^{2}\right)$
(ii) Obtain correct first iterate $1.348 \ldots$

Attempt correct process to find at least
2 iterates
Obtain at least 3 correct iterates
Obtain 1.344

M1 any non-zero constants k_{1}, k_{2}
A1
A1

M1 using sound processes
A1 5 AG ; necessary detail required

B1
M1
A1
A1 4 answer required to exactly 3 d.p.; allow recovery after error

$$
[1 \rightarrow 1.34844 \rightarrow 1.34382 \rightarrow 1.34389]
$$

7 (i) Show correct general shape (alternating above and below x-axis)
Draw (more or less) correct sketch
(ii) Attempt solution of $\cos x=\frac{1}{3}$

Obtain 1.23 or 0.392π
Obtain 5.05 or 1.61π
(iii) Either: Obtain equation of form $\tan \theta=k$ M1

Obtain $\tan \theta=5$
Obtain two values only of form
$\theta, \theta+\pi \quad$ M1
Obtain 1.37 and 4.51 (or 0.437π and 1.44π)

Or: (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value

Attempt solution at least to find one value in first quadrant and one value in third
Obtain 1.37 and 4.51
(or equivs as above)

M1 with no branch reaching x-axis
A1 2 with at least one of 1 and -1 indicated or clearly implied

M1 maybe implied; or equiv
A1 or greater accuracy
A1 3 or greater accuracy and no others within $0 \leq x \leq 2 \pi$; penalise answer(s) to 2 sf only once
any constant k; maybe implied
A1
M1 within $0 \leq x \leq 2 \pi$; allow degrees at this stage

A1 4 allow ± 1 in third sig fig; or greater accuracy

M1
A1 $\tan ^{2} \theta=25, \cos ^{2} \theta=\frac{1}{26}, \ldots$

A1 ignoring values in second and fourth quadrants

8 (i) Attempt use of quotient rule
Obtain $\frac{(4 \ln x+3) \frac{4}{x}-(4 \ln x-3) \frac{4}{x}}{(4 \ln x+3)^{2}}$
Confirm $\frac{24}{x(4 \ln x+3)^{2}}$
(ii) Identify $\ln x=\frac{3}{4}$

State or imply $x=\mathrm{e}^{\frac{3}{4}}$
Substitute e^{k} completely in expression for derivative
Obtain $\frac{2}{3} \mathrm{e}^{-\frac{3}{4}}$
(iii) State or imply $\int \frac{4 \pi}{x(4 \ln x+3)^{2}} \mathrm{~d} x$

Obtain integral of form $k \frac{4 \ln x-3}{4 \ln x+3}$
or $k(4 \ln x+3)^{-1}$
Substitute both limits and subtract right way round
Obtain $\frac{4}{21} \pi$

M1 allow for numerator 'wrong way round'; or equiv

A1 or equiv

A1 3 AG; necessary detail required

B1 or equiv
B1

M1 and deal with $\ln \mathrm{e}^{k}$ term
A1 4 or exact (single term) equiv
*M1 any constant k
M1 dep *M
A1 $\mathbf{4}$ or exact equiv

9 (i) Attempt use of either of $\tan (A \pm B)$ identities
M1
Substitute $\tan 60^{\circ}=\sqrt{3}$ or $\tan ^{2} 60^{\circ}=3$
Obtain $\frac{\tan \theta+\sqrt{3}}{1-\sqrt{3} \tan \theta} \times \frac{\tan \theta-\sqrt{3}}{1+\sqrt{3} \tan \theta}$

Obtain $\frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}$
(ii) Use $\sec ^{2} \theta=1+\tan ^{2} \theta$

Attempt rearrangement and simplification of equation involving $\tan ^{2} \theta$
Obtain $\tan ^{4} \theta=\frac{1}{3}$
Obtain 37.2
Obtain 142.8
(iii) Attempt rearrangement of $\frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}=k^{2}$ to form

$$
\tan ^{2} \theta=\frac{\mathrm{f}(k)}{\mathrm{g}(k)}
$$

M1
Obtain $\tan ^{2} \theta=\frac{k^{2}+3}{1+3 k^{2}}$
Observe that RHS is positive for all k, giving one value in each quadrant

B1
A1 or equiv (perhaps with $\tan 60^{\circ}$ still involved)

A1 4 AG

B1

M1 or equiv involving $\sec \theta$
A1 or equiv $\sec ^{2} \theta=1.57735 \ldots$
A1 or greater accuracy
A1 5 or greater accuracy; and no others between 0 and 180

Mark Scheme 4724

 June 20071
(i) Correct format $\frac{A}{x+2}+\frac{B}{x-3}$
M
$A=1$ and $B=2$
(ii) $-A(x+2)^{-2}-B(x-3)^{-2}$

Convincing statement that each denom >0
State whole $\exp <0$ AG
Use parts with $u=x^{2}, \mathrm{~d} v=\mathrm{e}^{x}$
Obtain $x^{2} \mathrm{e}^{x}-\int 2 x \mathrm{e}^{x}(\mathrm{~d} x)$

Attempt parts again with $u=(-)(2) x, \mathrm{~d} v=\mathrm{e}^{x}$
Final $=\left(x^{2}-2 x+2\right) \mathrm{e}^{x} \quad$ AEF incl brackets
Use limits correctly throughout

	$\mathrm{e}^{(1)}-2$ ISW Exact answer only
	Volume $=(k) \int_{0}^{\pi} \sin ^{2} x(\mathrm{~d} x)$
Suitable method for integrating $\sin ^{2} x$	
	$\int \sin ^{2} x(\mathrm{~d} x)=\frac{1}{2} \int 1-\cos 2 x(\mathrm{~d} x)$
$\int \cos 2 x(\mathrm{~d} x)=\frac{1}{2} \sin 2 x$	

Use limits correctly
Volume $=\frac{1}{2} \pi^{2}$ WWW Exact answer
(i) $\begin{aligned} & \left(1+\frac{x}{2}\right)^{-2} \\ & =1+(-2)\left(\frac{x}{2}\right)+\frac{-2 .-3}{2}\left(\frac{x}{2}\right)^{2}+\frac{-2 .-3 .-4}{3!}\left(\frac{x}{2}\right)^{3}\end{aligned}$
$=1-x$
$+\frac{3}{4} x^{2}-\frac{1}{2} x^{3}$
$(2+x)^{-2}=\frac{1}{4}\left(\right.$ their exp of $\left.(1+a x)^{-2}\right)$ mult out
$|x|<2$ or $-2<x<2$ (but not $\left|\frac{1}{2} x\right|<1$)
(ii) If (i) is $a+b x+c x^{2}+d x^{3}$ evaluate $b+d$ $-\frac{3}{8}\left(x^{3}\right)$

5(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
$=\frac{-4 \sin 2 t}{-\sin t}$
$=8 \cos t$
$\leq 8 \quad$ AG
(ii) Use $\cos 2 t=2 \cos ^{2} t+/-1$ or $1-2 \cos ^{2} t$

Use correct version $\cos 2 t=2 \cos ^{2} t-1$
Produce WWW $y=4 x^{2}+1 \quad$ AG
(iii) U-shaped parabola abve x-axis, sym abt y-axis Portion between $(-1,5)$ and $(1,5)$
N.B. If (ii) answered or quoted before (i) attempted,

M1

Accept $\frac{4 \sin 2 t}{\sin t}$ WWW
with brief explanation eg $\cos t \leq 1$
If starting with $y=4 x^{2}+1$, then
Subst $x=\cos t, y=3+2 \cos 2 t \quad \mathrm{M} 1$
Either substitute a formula for $\cos 2 t \mathrm{M} 1$
Obtain $0=0$ or $4 \cos ^{2} t+1=4 \cos ^{2} t+1 \mathrm{~A} 1$
Or Manip to give formula for $\cos 2 t \quad \mathrm{M} 1$
Obtain corr formula \& say it's correct A1
Any labelling must be correct
2 either $x= \pm 1$ or $y=5$ must be marked
(i) B 2 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x+\mathrm{B} 1, \mathrm{~B} 1$ if earned. 9

6

(i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$

Using $\mathrm{d}(u v)=u \mathrm{~d} v+v \mathrm{~d} u$ for the (3)xy term
$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}+3 x y+4 y^{2}\right)=2 x+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ \& subst $(x, y)=(2,3)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{13}{30}$
Grad normal $=\frac{30}{13} \quad$ follow-through
Find equ any line thro $(2,3)$ with any num gra $30 x-13 y-21=0 \quad$ AEF
or v.v. Subst now or at normal eqn stage;
(M1 dep on either/both B1 M1 earned)
Implied if grad normal $=\frac{30}{13}$
This f.t. mark awarded only if numerical

No fractions in final answer

Stated or in relevant position in division
Accept $\frac{x}{x^{2}+4}$ as remainder
$2 x+3+\frac{x}{x^{2}+4}$

Ignore any integration of $\frac{D}{x^{2}+4}$
logs need not be combined.

8
(i) Sep variables eg $\int \frac{1}{6-h}(\mathrm{~d} h)=\int \frac{1}{20}(\mathrm{~d} t) \quad{ }^{*} \mathrm{M} 1 \quad$ s.o.i. $\underline{\mathrm{Or}} \frac{\mathrm{d} t}{\mathrm{~d} h}=\frac{20}{6-h} \rightarrow \mathrm{M} 1$

LHS $=-\ln (6-h)$
RHS $=\frac{1}{20} t \quad(+c)$
Subst $t=0, h=1$ into equation containing ' c '
Correct value of their $\mathrm{c}=-(20) \ln 5 \mathrm{WWW}$
Produce $t=20 \ln \frac{5}{6-h} \quad$ www AG
(ii) When $h=2, t=20 \ln \frac{5}{4}=4.46(2871)$
(iii) Solve $10=20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h}=\mathrm{e}^{0.5}$
$h=2.97(2.9673467 \ldots)$
[In (ii),(iii) accept non-decimal (exact) answers
Accept truncated values in (ii),(iii).
(iv) Any indication of (approximately) 6 (m)
or (20)In 5 if on LHS
A1 6 Must see $\ln 5-\ln (6-h)$

B1 $\quad \mathbf{1}$ Accept 4.5, $4 \frac{1}{2}$
or $\frac{6-h}{5}=\mathrm{e}^{-0.5}$ or suitable $\frac{1}{2}$-way stage
A1 2
$6-5 \mathrm{e}^{-0,5}$ or $6-\mathrm{e}^{1.109}$
of any two vectors $(-6+24-4=14)$
Correct method for scalar product
Correct method for magnitude
68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad
[N.B. 61 (60.562) will probably have been generated by $5 i$
(ii) Indication that relevant vectors are parallel
$c=-4$
(iii) Produce $2 / 3$ equations containing t, u (\& c)

Solve the 2 equations not containing ' c '
$t=2, u=1$
Subst their (t, u) into equation containing c $c=-3$
Alternative method for final 4 marks
Solve two equations, one with ' c ', for t and u in terms of c , and substitute into third equation $c=-3$

Mark Scheme 4725

 June 2007| 1 | EITHER
 $a=2$ $b=2 \sqrt{3},$
 OR $a=2 \quad b=2 \sqrt{3}$ | M1 A1 M1 A1 M1 M1 A1 A1 | 4 4 | Use trig to find an expression for a (or b) Obtain correct answer Attempt to find other value Obtain correct answer a.e.f.
 (Allow 3.46)
 State 2 equations for a and b
 Attempt to solve these equations Obtain correct answers a.e.f. $\mathrm{SR} \pm$ scores A1 only |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $\begin{aligned} & \left(1^{3}=\right) \frac{1}{4} \times 1^{2} \times 2^{2} \\ & \frac{1}{4} n^{2}(n+1)^{2}+(n+1)^{3} \\ & \frac{1}{4}(n+1)^{2}(n+2)^{2} \end{aligned}$ | B1
 M1
 M1 (indep)
 A1
 A1 | 5 5 | Show result true for $n=1$
 Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly
 Specific statement of induction conclusion |
| 3 | $\begin{aligned} & 3 \Sigma r^{2}-3 \Sigma r+\Sigma 1 \\ & 3 \Sigma r^{2}=\frac{1}{2} n(n+1)(2 n+1) \\ & 3 \Sigma r=\frac{3}{2} n(n+1) \\ & \sum 1=n \\ & n^{3} \end{aligned}$ | $\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ | 6 6 | Consider the sum of three separate terms
 Correct formula stated
 Correct formula stated
 Correct term seen
 Attempt to simplify
 Obtain given answer correctly |
| 4 | (i) $\frac{1}{2}\left(\begin{array}{cc}5 & -1 \\ -3 & 1\end{array}\right)$
 (ii) $\frac{1}{2}\left(\begin{array}{cc} 2 & 0 \\ 23 & -5 \end{array}\right)$ | B1
 B1
 M1
 M1 (indep)
 Alft
 A1ft | 4 | Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get $1^{\text {st }}$ column Divide by the determinant or solve $2^{\text {nd }}$ pair to get $2^{\text {nd }}$ column
 Attempt to use $B^{-1} A^{-1}$ or find B
 Attempt at matrix multiplication
 One element correct, a.e.f,
 All elements correct, a.e.f.
 NB ft consistent with their (i) |

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
(i) \(\frac{1}{r(r+1)}\) \\
(ii)
\[
1-\frac{1}{n+1}
\] \\
(iii)
\[
\begin{aligned}
\& S_{\infty}=1 \\
\& \frac{1}{n+1}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1 c.a.o.
\end{tabular} \& 1

3
3

3

7 \& | Show correct process to obtain given result |
| :--- |
| Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be n not any other letter |
| State correct value of sum to infinity Ft their (ii) Use sum to infinity - their (ii) |
| Obtain correct answer a.e.f. |

\hline 6 \& | (i) (a) $\alpha+\beta+\gamma=3, \alpha \beta+\beta \gamma+\gamma \alpha=2$ |
| :--- |
| (b) $\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\ &=9-4=5 \\ & \frac{3}{u^{3}}-\frac{9}{u^{2}}+\frac{6}{u}+2=0 \\ & \text { (ii) (a) } \\ & 2 u^{3}+6 u^{2}-9 u+3=0 \end{aligned}$ |
| (b) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=-3$ | \& | B1 B1 |
| :--- |
| M1 |
| A1 ft |
| M1 |
| A1 |
| M1 |
| A1ft | \& 2

2

2
8

8 \& | State correct values |
| :--- |
| State or imply the result and use their values |
| Obtain correct answer |
| Use given substitution to obtain an equation |
| Obtain correct answer |
| Required expression is related to new cubic stated or implied -(their "b" / their "a") |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(i)
\[
a(a-12)+32
\] \\
(ii) \\
\(\operatorname{det} \mathbf{M}=12\) \\
non-singular \\
(iii) EITHER \\
OR
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3
2

3
3
8

8 \& | Show correct expansion process |
| :--- |
| Show evaluation of a 2×2 |
| determinant |
| Obtain correct answer a.e.f. |
| Substitute $a=2$ in their determinant |
| Obtain correct answer and state a consistent conclusion |
| $\operatorname{det} \mathrm{M}=0$ so non-unique solutions |
| Attempt to solve and obtain 2 inconsistent equations |
| Deduce that there are no solutions |
| Substitute $a=4$ and attempt to solve |
| Obtain 2 correct inconsistent |
| equations |
| Deduce no solutions |

\hline 8 \& | (i) Circle, centre $(3,0)$, y-axis a tangent at origin Straight line, through $(1,0)$ with + ve slope In $1^{\text {st }}$ quadrant only |
| :--- |
| (ii) Inside circle, below line, above x-axis | \& \[

$$
\begin{aligned}
& \hline \text { B1B1 } \\
& \text { B1 } \\
& \text { B2ft }
\end{aligned}
$$
\] \& 6

2

8 \& | Sketch showing correct features N.B. treat 2 diagrams asa MR |
| :--- |
| Sketch showing correct region SR: B1ft for any 2 correct features |

\hline
\end{tabular}

9	(i) $\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)$ (ii) Rotation (centre O), 45°, clockwise (iii) (iv) $\binom{0}{0}\binom{1}{1}\binom{1}{-1}\binom{2}{0}$ (v) $\operatorname{det} \mathbf{C}=2$ area of square has been doubled	B1 B1B1B1 B1 M1 A1 B1 B1	2 2	Correct matrix Sensible alternatives OK, must be a single transformation Matrix multiplication or combination of transformations For at least two correct images For correct diagram State correct value State correct relation a.e.f.
10	(i) $x^{2}-y^{2}=16 \text { and } x y=15$ $\pm(5+3 i)$ (ii) $\begin{aligned} & z=1 \pm \sqrt{16+30 \mathrm{i}} \\ & 6+3 \mathrm{i}, \quad-4-3 \mathrm{i} \end{aligned}$	M1 A1A1 M1 M1 A1 M1* A1 *M1 dep A1 A1ft	6 5 5 11	Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2}$ and $16+30 \mathrm{i}$ Obtain each result Eliminate to obtain a quadratic in x^{2} or y^{2} Solve to obtain $x=(\pm) 5 \text { or } y=(\pm) 3$ Obtain correct answers as complex numbers Use quadratic formula or complete the square Simplify to this stage Use answers from (i) Obtain correct answers

Mark Scheme 4726 June 2007

1 Correct formula with correct r
Rewrite as $a+b \cos 6 \theta$
Integrate their expression correctly
Get $1 / 3 \pi$
2 (i) Expand to $\sin 2 x \cos ^{1 / 4} \pi+\cos 2 x \sin ^{1 / 4} \pi$
Clearly replace $\cos ^{1} 1 / 4 \pi, \sin ^{1} / 4 \pi$ to A.G.
(ii) Attempt to expand $\cos 2 x$

Attempt to expand $\sin 2 x$
Get $1 / 2 \sqrt{ } 2\left(1+2 x-2 x^{2}-4 x^{3} / 3\right)$

M1 Allow $r^{2}=2 \sin ^{2} 3 \theta$
M1 $a, b \neq 0$
A1 $\sqrt{ }$ From $a+b \cos 6 \theta$
A1 cao
B1
B1
M1 Allow $1-2 x^{2} / 2$
M1 Allow $2 x-2 x^{3} / 3$
A1 Four correct unsimplified terms in any order; allow bracket; AEEF
SR Reasonable attempt at $f^{n}(0)$ for $n=0$ to 3 M1
Attempt to replace their values in Maclaurin

M1
Get correct answer only A1
M1 Allow $C=0$ here
M1 $\sqrt{ }$ May imply above line; on their P.F.
M1 Must lead to at least 3 coeff.; allow cover-up method for A
A1 cao from correct method
B1 $\sqrt{ }$ On their A
B1 $\sqrt{ }$ On their C; condone no constant; ignore any $B \neq 0$

M1 Two terms seen
M1 Allow +
A1
A1 cao
B1 On any $k \sqrt{ }\left(1-x^{2}\right)$
M1 In any reasonable integral
A1
SR Reasonable sub.
B1
Replace for new variable and attempt to integrate (ignore limits) M1 Clearly get $1 / 2 \pi \quad \mathrm{~A} 1$

5 (i) Attempt at parts on $\int 1(\ln x)^{n} \mathrm{~d} x$ Get $\mathrm{x}(\ln \mathrm{x})^{\mathrm{n}}-\int^{\mathrm{n}}(\ln x)^{\mathrm{n}-1} \mathrm{dx}$
Put in limits correctly in line above Clearly get A.G.
(ii) Attempt I_{3} to I_{2} as $I_{3}=\mathrm{e}-3 I_{2}$

Continue sequence in terms of In
Attempt I_{0} or I_{1}
Get 6-2e
(i) Area under graph $\left(=\int 1 / x^{2} \mathrm{~d} x, 1\right.$ to $\left.n+1\right)$
$<$ Sum of rectangles (from 1 to n)
Area of each rectangle $=$ Width x Height $=1 \times 1 / x^{2}$
(ii) Indication of new set of rectangles

Similarly, area under graph from 1 to n
$>$ sum of areas of rectangles from 2 to n Clear explanation of A.G.
(iii) Show complete integrations of RHS, using correct, different limits
Correct answer, using limits, to one integral
Add 1 to their second integral to get complete series
Clearly arrive at A.G.
(iv) Get one limit

Get both 1 and 2

M1
A1
M1 Two terms seen
A1
M1
A1 $\ln \mathrm{e}=1, \ln 1=0$ seen or implied
M1
A1 $I_{2}=\mathrm{e}-2 I_{1}$ and $/$ or $I_{1}=\mathrm{e}-I_{0}$
M1 $\left(I_{0}=\mathrm{e}-1, I_{1}=1\right)$
A1 cao

B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)

B1 Some evidence of area worked out seen or implied

B1
B1 Sum (total) seen or implied
B1 Diagram; use of left-shift of previous areas

M1 Reasonable attempt at $\int x-^{2} d x$
A1

B1 Quotable
B1 Quotable; limits only required

7 (i) Use correct definition of \cosh or $\sinh x$
Attempt to mult. their cosh/sinh
Correctly mult. out and tidy
Clearly arrive at A.G.
(ii) Get $\cosh (x-y)=1$

Get or imply $(x-y)=0$ to A.G.
(iii) Use $\cosh ^{2} x=9$ or $\sinh ^{2} x=8$

Attempt to solve $\cosh \mathrm{x}=3$ (not -3)
or $\sinh x= \pm \sqrt{ } 8$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only)
Get at least one x solution correct
Get both solutions correct, x and y

8
(i) $x_{2}=0.1890$
$x_{3}=0.2087$
$x_{4}=0.2050$
$x_{5}=0.2057$
$x_{6}=0.2055$
$x_{7}\left(=x_{8}\right)=0.2056$ (to x_{7} minimum)
$\alpha=0.2056$
(ii) Attempt to diff. $\mathrm{f}(x)$

Use α to show $\mathrm{f}^{\prime}(\alpha) \neq 0$
(iii) $\delta_{3}=-0.0037($ allow -0.004$)$
(iv) Develop from $\delta_{10}=\mathrm{f}^{\prime}(\alpha) \delta_{9}$ etc. to get δ_{i} or quote $\delta_{10}=\delta_{3} \mathrm{f}^{\prime}(\alpha)^{7}$
Use their δ_{i} and $\mathrm{f}^{\prime}(\alpha)$
Get 0.000000028

B1 Seen anywhere in (i)
M1
A1 $\sqrt{ }$
A1 Accept e^{x-y} and e^{y-x}
M1
A1
B1
M1 $x=\ln (3+\sqrt{8})$ from formulae book or from basic cosh definition
A1
A1 $\mathrm{x}, \mathrm{y}=\ln (3 \pm 2 \sqrt{ } 2)$; AEEF
SR Attempt tanh $=\sinh /$ cosh \quad B1
Get $\tanh x= \pm \sqrt{8 / 3}(+$ or -$) \quad$ M1
Get at least one sol. correct A1
Get both solutions correct A1
SR Use exponential definition B1
Get quadratic in e^{x} or $\mathrm{e}^{2 \mathrm{x}} \quad$ M1
Solve for one correct $x \quad$ A1
Get both solutions, x and $y \quad$ A1
B1
B1 $\sqrt{ }$ From their x_{1} (or any other correct)
B1 $\sqrt{ }$ Get at least two others correct, all to a minimum of 4 d.p.

B1 cao; answer may be retrieved despite some errors

M1 $k /(2+x)^{3}$
A1 $\sqrt{ }$ Clearly seen, or explain $k /(2+x)^{3} \neq 0$ as $\mathrm{k} \neq 0$; allow ± 0.1864
SR Translate $\mathrm{y}=1 / \mathrm{x}^{2} \quad$ M1
State/show $y=1 / x^{2}$ has no TP A1
B1 $\sqrt{ }$ Allow \pm, from their x_{4} and x_{3}

M1 Or any δ_{1} eg use $\delta_{9}=\mathrm{x}_{10}-\mathrm{x} 9$
M1
A1 Or answer that rounds to \pm 0.00000003

9 (i) Quote $x=a$
Attempt to divide out
Get $y=x-a$
(ii) Attempt at quad. in $x(=0)$

Use ${ }^{b 2-} 4 a c \geq 0$ for real x
Get $y^{2}+4 a^{2} \geq 0$
State/show their quad. is always >0
(iii)

B1

M1 Allow M1 for $\mathrm{y}=\mathrm{x}$ here; allow
A1 $\quad(x-a)+k /(x-a)$ seen or implied
A1 Must be equations
M1
M1 Allow >
A1
B1 Allow \geq
B $1 \sqrt{ }$ Two asymptotes from (i) (need not be labelled)

B1 Both crossing points

B1 $\sqrt{ }$ Approaches - correct shape
SR Attempt diff. by quotient/product rule M1
Get quadratic in x for $\mathrm{d} y / \mathrm{d} x=0$ and note $b^{2}-4 a c<0$

A1
Consider horizontal asymptotes B1
Fully justify answer B1

Mark Scheme 4727 June 2007

1 (i) $z z^{*}=r \mathrm{e}^{\mathrm{i} \theta} . r \mathrm{e}^{-\mathrm{i} \theta}=r^{2}=\|z\|^{2}$	B1 1	For verifying result AG
(ii) Circle Centre $0(+0 \mathrm{i}) O R(0,0) O R O$, radius 3	$$	For stating circle For stating correct centre and radius
2 EITHER: $(\mathbf{r}=)[3+t, 1+4 t,-2+2 t]$ $8(3+t)-7(1+4 t)+10(-2+2 t)=7$ $\Rightarrow(0 t)+(-3)=7 \Rightarrow$ contradiction l is parallel to Π, no intersection OR: $[1,4,2] \cdot[8,-7,10]=0$ $\Rightarrow l$ is parallel to Π $(3,1,-2)$ into $П$ $\Rightarrow 24-7-20 \neq 7$ l is parallel to Π, no intersection	M1 M1 A1 A1 B1 5 M1 A1 M1 A1 B1	For parametric form of l seen or implied For substituting into plane equation For obtaining a contradiction For conclusion from correct working For finding scalar product of direction vectors For correct conclusion For substituting point into plane equation For obtaining a contradiction For conclusion from correct working
OR:Solve $\frac{x-3}{1}=\frac{y-1}{4}=\frac{z+2}{2}$ and $8 x-7 y+10 z=7$ eg $y-2 z=3,2 y-2=4 z+8$ eg $4 z+4=4 z+8$ l is parallel to Π, no intersection	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \quad 5 \end{aligned}$	For eliminating one variable For eliminating another variable For obtaining a contradiction For conclusion from correct working
3 Aux. equation $m^{2}-6 m+8(=0)$ $\begin{aligned} & m=2,4 \\ & \mathrm{CF}(y=) A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x} \\ & \text { PI }(y=) C \mathrm{e}^{3 x} \\ & 9 C-18 C+8 C=1 \Rightarrow C=-1 \\ & \text { GS } y=A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x}-\mathrm{e}^{3 x} \end{aligned}$	M1 A1 A1 $\sqrt{ }$ M1 A1 $B 1 \sqrt{ } 6$ 6	For auxiliary equation seen For correct roots For correct CF. f.t. from their m For stating and substituting PI of correct form For correct value of C For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI

	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	For obtaining s For obtaining s
(ii) METHOD 1 Closed: see table Identity $=r$ Inverses: $\begin{aligned} & p^{-1}=s, \quad q^{-1}=t, \quad\left(r^{-1}=r\right), \\ & s^{-1}=p, t^{-1}=q \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \end{array}$	For stating closure with reason For stating identity r For checking for inverses For stating inverses $O R$ For giving sufficient explanation to justify each element has an inverse eg r occurs once in each row and/or column
METHOD 2 Identity $=r$ eg $p^{2}=t, p^{3}=q, p^{4}=s$ $\Rightarrow p^{5}=r$, so p is a generator	B1 M1 A1 A1	For stating identity r For attempting to establish a generator $\neq r$ For showing powers of $p(O R q, s$ or $t)$ are different elements of the set For concluding $p^{5}\left(O R q^{5}, s^{5}\right.$ or $\left.t^{5}\right)=r$
(iii) $e, d, d^{2}, d^{3}, d^{4}$	B2 2 8	For stating all elements AEF eg $d^{-1}, d^{-2}, d d$

5 (i) $(\cos 6 \theta=) \operatorname{Re}(c+\mathrm{i} s)^{6}$ $\begin{aligned} & (\cos 6 \theta=) c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6} \\ & (\cos 6 \theta=) \\ & c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{3} \\ & (\cos 6 \theta=) 32 c^{6}-48 c^{4}+18 c^{2}-1 \end{aligned}$	$\begin{array}{\|rr} \text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 4 \end{array}$	For expanding (real part of $)(c+\mathrm{i} s)^{6}$ at least 4 terms and 1 evaluated binomial coefficient needed For correct expansion For using $s^{2}=1-c^{2}$ For correct result AG
$\begin{aligned} & \text { (ii) } 64 x^{6}-96 x^{4}+36 x^{2}-3=0 \Rightarrow \cos 6 \theta=\frac{1}{2} \\ & \Rightarrow(\theta=) \frac{1}{18} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi \text { etc. } \\ & \cos 6 \theta=\frac{1}{2} \text { has multiple roots } \\ & \text { largest } x \text { requires smallest } \theta \\ & \Rightarrow \text { largest positive root is } \cos \frac{1}{18} \pi \end{aligned}$	M1 A1 M1 A1 4	For obtaining a numerical value of $\cos 6 \theta$ For any correct solution of $\cos 6 \theta=\frac{1}{2}$ For stating or implying at least 2 values of θ For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root from a list of 3 positive roots $O R$ from general solution $O R$ from consideration of the cosine function

$\begin{aligned} 6 \text { (i) } & \mathbf{n} \\ & =l_{1} \times l_{2} \\ & \mathbf{n} \\ & =[2,-1,1] \times[4,3,2] \\ & \mathbf{n} \\ & =k[-1,0,2] \\ & {[3,4,-1] \cdot k[-1,0,2]=-5 k } \\ & \\ & \text { r. }[-1,0,2]=-5 \end{aligned}$	B1 M1* A1 M1 (*dep) A1 5	For stating or implying in (i) or (ii) that \mathbf{n} is perpendicular to l_{1} and l_{2} For finding vector product of direction vectors For correct vector (any k) For substituting a point of l_{1} into $\mathbf{r} . \boldsymbol{n}$ For obtaining correct p. AEF in this form	
$\begin{aligned} & \text { (ii) }[5,1,1] \cdot k[-1,0,2]=-3 k \\ & \text { r. }[-1,0,2]=-3 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } 2 \end{aligned}$	For using same \mathbf{n} and substituting a point of l_{2} For obtaining correct p. AEF in this form f.t. on incorrect \mathbf{n}	
$\begin{aligned} & \text { (iii) } d=\frac{\|-5+3\|}{\sqrt{5}} \text { OR } d=\frac{\|[2,-3,2] \cdot[-1,0,2]\|}{\sqrt{5}} \\ & \text { OR } d \text { from }(5,1,1) \text { to } \Pi_{1}=\frac{\|5(-1)+1(0)+1(2)+5\|}{\sqrt{5}} \\ & \text { OR } d \text { from }(3,4,-1) \text { to } \Pi_{2}=\frac{\|3(-1)+4(0)-1(2)+3\|}{\sqrt{5}} \\ & \text { OR }[3-t, 4,-1+2 t] \cdot[-1,0,2]=-3 \Rightarrow t=\frac{2}{5} \\ & \text { OR }[5-t, 1,1+2 t] \cdot[-1,0,2]=-5 \Rightarrow t=-\frac{2}{5} \\ & \quad d=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}=0.894427 \ldots \end{aligned}$	M1 $\mathrm{A} 1 \sqrt{ } 2$	For using a distance formula from their equations Allow omission of \|	 $O R$ For finding intersection of \mathbf{n}_{1} and Π_{2} or \mathbf{n}_{2} and Π_{1} For correct distance AEF f.t. on incorrect \mathbf{n}
(iv) d is the shortest $O R$ perpendicular distance between l_{1} and l_{2}	B1 $\mathbf{1}$ 10	For correct statement	
$7 \text { (i) } \begin{aligned} \left(z-\mathrm{e}^{\mathrm{i} \phi}\right)\left(z-\mathrm{e}^{-\mathrm{i} \phi}\right) & \equiv z^{2}-(2) z \frac{\left(\mathrm{e}^{\mathrm{i} \phi}+\mathrm{e}^{-\mathrm{i} \phi}\right)}{(2)}+1 \\ & \equiv z^{2}-(2 \cos \phi) z+1 \end{aligned}$	B1 1	For correct justification AG	
(ii) $z=\mathrm{e}^{\frac{2}{7} k \pi \mathrm{i}}$ for $k=0,1,2,3,4,5,6$ OR $0, \pm 1, \pm 2, \pm 3$	B1 B1 B1 B1 4	For general form $O R$ any one non-real root For other roots specified ($k=0$ may be seen in any form, eg $1, \mathrm{e}^{0}, \mathrm{e}^{2 \pi \mathrm{i}}$) For answers in form $\cos \theta+\mathrm{i} \sin \theta$ allow maximum B1 B0 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+{ }^{\text {ve }}$ real axis, and other points in correct quadrants	
$\begin{aligned} & \text { (iii) }\left(z^{7}-1=\right)(z-1)\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \\ & =\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right) \times\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \times \\ & \quad \times(z-1) \\ & =\left(z^{2}-\left(2 \cos \frac{2}{7} \pi\right) z+1\right) \times \\ & \quad\left(z^{2}-\left(2 \cos \frac{4}{7} \pi\right) z+1\right) \times\left(z^{2}-\left(2 \cos \frac{6}{7} \pi\right) z+1\right) \times \\ & \times(z-1) \end{aligned}$	M1 M1 B1 A1 A1 5 10	For using linear factors from (ii), seen or implied For identifying at least one pair of complex conjugate factors For linear factor seen For any one quadratic factor seen For the other 2 quadratic factors and expression written as product of 4 factors	

8 (i) Integrating factor $\mathrm{e}^{\int \tan x(\mathrm{~d} x)}$ $\begin{aligned} & =\mathrm{e}^{-\ln \cos x} \\ & =(\cos x)^{-1} \text { OR } \sec x \\ & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y(\cos x)^{-1}\right)=\cos ^{2} x \\ & y(\cos x)^{-1}=\int \frac{1}{2}(1+\cos 2 x)(\mathrm{d} x) \\ & y(\cos x)^{-1}=\frac{1}{2} x+\frac{1}{4} \sin 2 x(+c) \\ & y=\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x+c\right) \cos x \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \sqrt{2} \\ \text { M1 } & \\ \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \mathbf{8} \end{array}$	For correct IF For integrating to \ln form For correct simplified IF AEF For $\frac{\mathrm{d}}{\mathrm{d} x}(y$.their IF $)=\cos ^{3} x$. their IF For integrating LHS For attempting to use $\cos 2 x$ formula $O R$ parts for $\int \cos ^{2} x \mathrm{~d} x$ For correct integration both sides AEF For correct general solution AEF
$\text { (ii) } \begin{aligned} 2 & =\left(\frac{1}{2} \pi+c\right) \cdot-1 \Rightarrow c=-2-\frac{1}{2} \pi \\ y & =\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x-2-\frac{1}{2} \pi\right) \cos x \end{aligned}$	A1 2 10	For substituting $(\pi, 2)$ into their GS and solve for c For correct solution AEF
9 $\begin{aligned} & \text { (i) } 3^{n} \times 3^{m}=3^{n+m}, n+m \in \mathrm{Z} \\ & \left(3^{p} \times 3^{q}\right) \times 3^{r}=\left(3^{p+q}\right) \times 3^{r}=3^{p+q+r} \\ & =3^{p} \times\left(3^{q+r}\right)=3^{p} \times\left(3^{q} \times 3^{r}\right) \Rightarrow \text { associativity } \end{aligned}$ Identity is 3^{0} Inverse is 3^{-n} $3^{n} \times 3^{m}=3^{n+m}=3^{m+n}=3^{m} \times 3^{n} \Rightarrow \text { commutativity }$	B1 M1 A1 B1 B1 B1 6	For showing closure For considering 3 distinct elements, seen bracketed $2+1$ or $1+2$ For correct justification of associativity For stating identity. Allow 1 For stating inverse For showing commutativity
(ii) (a) $3^{2 n} \times 3^{2 m}=3^{2 n+2 m}\left(=3^{2(n+m)}\right)$ Identity, inverse OK	$\begin{aligned} & \mathrm{B} 1^{*} \\ & \text { B1 } \\ & \text { (*dep) } \\ & \hline \end{aligned}$	For showing closure For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n}, $-n \notin$ subset	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	For considering inverse For justification of not being a subgroup 3^{-n} must be seen here or in (i)
	$\begin{array}{rr} \text { M1 } & \\ \text { A1 } & \mathbf{2} \\ \text { M1 } & \\ \text { A1 } & \\ \boxed{12} \\ \hline \end{array}$	For attempting to find a specific counter-example of closure For a correct counter-example and statement that it is not a subgroup For considering closure in general For explaining why $n^{2}+m^{2} \neq r^{2}$ in general and statement that it is not a subgroup

Mark Scheme 4728 June 2007

1(i)	$\mathrm{X}=5$	B1	$\mathrm{X}=-5 \mathrm{~B} 0$. Both may be seen/implied in (ii)
	$\mathrm{Y}=12$	B1 [2]	No evidence for which value is X or Y available from (ii) award B1 for the pair of values 5 and 12 irrespective of order
(ii)	$\mathrm{R}^{2}=5^{2}+12^{2}$	M1	For using $\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$
	Magnitude is 13 N	A1	Allow 13 from $\mathrm{X}=-5$
	$\tan \theta=12 / 5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	$\begin{aligned} & \text { A1 } \\ & {[4]} \end{aligned}$	SR: $\mathrm{p}=14.9$ and $\mathrm{Q}=11.4$ giving $\mathrm{R}=13+/-0.1 \quad \mathrm{~B} 2$, Angle $=67.5+/-0.5 \mathrm{~B} 2$

2(i)	$250+1 / 2(290-250)$	M1	Use of the ratio 12:12 (may be implied), or $\mathrm{v}=\mathrm{u}+\mathrm{at}$	
	$\mathrm{t}=270$	$\begin{aligned} & \mathrm{A} 1 \\ & {[2]} \end{aligned}$		
(ii)		M1	The idea that area represents displacement Correct structure, ie triangle $1+$ rectangle $2+$ triangle 3 \|triangle4	with triangle $3=\mid$ triangle $4 \mid$, triangle $1+$ rectangle2, trapezium $1 \& 2$, etc
	$1 / 2 \times 40 \times 12+210 \times 12+1 / 2 \times 20 \times 12-$ $1 / 2 \times 20 \times 12$ or $1 / 2 \times 40 \times 12+210 \times 12$ or $1 / 2 \times(210+250) \times 12$ etc	M1		
	Displacement is 2760 m	A1 [3]		
(iii)	appropriate structure, ie triangle + rectangle + triangle + \|triangle \mid, triangle + rectangle +2 triangle, etc	M1	All terms positive	
	Distance is 3000 m	$\begin{aligned} & \mathrm{A} 1 \\ & {[2]} \\ & \hline \end{aligned}$	Treat candidate doing (ii) in (iii) and (iii) in (ii) as a mis-read.	

3(i)	$\mathrm{R}+\mathrm{T} \sin 72^{\circ}=50 \mathrm{~g}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[2]} \end{aligned}$	An equation with R , T and 50 in linear combination. $\mathrm{R}+0.951 \mathrm{~T}=50 \mathrm{~g}$
(ii)	$\begin{align*} & \mathrm{T}=50 \mathrm{~g} / \sin 72^{\circ} \\ & \mathrm{T}=515 \tag{AG}\\ & \mathrm{~T}=\mathrm{mg} \\ & \mathrm{~m}=52.6 \end{align*}$	M1 A1 B1 B1 [4]	Using $\mathrm{R}=0$ (may be implied) and $T \sin 72^{\circ}=50(\mathrm{~g})$ Or better Accept 52.5
(iii)	$\begin{aligned} & X=T \cos 72^{\circ} \\ & X=159 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Implied by correct answer Or better

4(i)	In Q4 right to left may be used as the positive sense throughout. $\begin{aligned} & 0.18 \times 2-3 \mathrm{~m}=0 \\ & \mathrm{~m}=0.12 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For using Momentum 'before' is zero 3 marks possible if g included consistently
(iia)	$\begin{aligned} & \text { Momentum after } \\ & \quad=-0.18 \times 1.5+1.5 \mathrm{~m} \\ & 0.18 \times 2-3 \mathrm{~m}=-0.18 \times 1.5+1.5 \mathrm{~m} \\ & \mathrm{~m}=0.14 \end{aligned}$	B1 M1 A1 [3]	For using conservation of momentum 3 marks possible if g included consistently
(iib)	$\begin{aligned} & 0.18 \times 2-3 \mathrm{~m} \\ & \quad=(0.18+\mathrm{m}) 1.5 \\ & \mathrm{~m}=0.02 \\ & 0.18 \times 2-3 \mathrm{~m}=-(0.18+\mathrm{m}) 1.5 \\ & \mathrm{~m}=0.42 \end{aligned}$	$\begin{aligned} & \text { B1ft } \\ & \text { B1 } \\ & \text { B1ft } \\ & \text { B1 } \\ & {[4]} \\ & \hline \end{aligned}$	ft wrong momentum 'before' 0 marks if g included

5(iii) cont	OR (without finding exactly where or when) $\begin{aligned} & \mathrm{v}_{\mathrm{P}}^{2}=8.4^{2}-2 \mathrm{~g}(\mathrm{~s}+/-2) \text { and } \\ & \mathrm{v}_{\mathrm{Q}}{ }^{2}=5.6^{2}-2 \mathrm{~g}[(\mathrm{~s}+/-2)] \\ & \mathrm{v}_{\mathrm{P}}^{2}=\mathrm{v}_{\mathrm{Q}}{ }^{2} \text { for all values of } \mathrm{s} \text { so that } \end{aligned}$ the speeds are always the same at the same heights. $0=8.4-\mathrm{gt} \text { and } 0=5.6-\mathrm{gt}$ $t_{P}=6 / 7$ and $t_{Q}=4 / 7$ means there is a time interval when Q has started to descend but P is still rising, and there will be a position where they have the same height but are moving in opposite directions.	M1 A1 A1 M1 A1 AI	Using $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}, \mathrm{cv}(5.6)$, different expressions for s . Correct sign for $\mathrm{g}, \mathrm{cv}(5.6),(\mathrm{s}+/-2)$ used only once cao. Verbal explanation essential Using $\mathrm{v}=\mathrm{u}+\mathrm{at} \mathrm{t}$ for P and for $\mathrm{Q}, \mathrm{a}=+/-\mathrm{g}$ Correct sign for g , correct choice for velocity of zero, $\operatorname{cv}(5.6)$ cao. Verbal explanation essential
6(i)	$\begin{aligned} & \mathrm{v}=0.004 \mathrm{t}^{3}-0.12 \mathrm{t}^{2}+1.2 \mathrm{t} \\ & \mathrm{v}(10)=4-12+12=4 \mathrm{~ms}^{-1} \end{aligned}$ (AG)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3]. } \end{aligned}$	For differentiating s Condone the inclusion of +c Correct formula for v (no +c) and $\mathrm{t}=10$ stated sufficient
(ii)	$\begin{align*} & \mathrm{v}=0.8 \mathrm{t}-0.04 \mathrm{t}^{2} \quad(+\mathrm{C}) \\ & 8-4+\mathrm{C}=4 \\ & \mathrm{v}=0.8 \times 20-0.04 \times 20^{2} \quad(+\mathrm{C}) \\ & \mathrm{v}(20)=16-16=0 \tag{AG} \end{align*}$	M1 A1 M1* M1 DA1 [5]	For integrating a Only for using $\mathrm{v}(10)=4$ to find C Dependant on M1*
(iii)	$\begin{aligned} & \mathrm{S}=0.4 \mathrm{t}^{2}-0.04 \mathrm{t}^{3} / 3 \quad(+\mathrm{K}) \\ & \mathrm{s}(10)=10-40+60=30 \end{aligned}$ $40-40 / 3+K=30 \rightarrow K=10 / 3$ $\mathrm{S}(20)=160-320 / 3+10 / 3=56.7 \mathrm{~m}$ OR $s(10)=10-40+60=30$ $\mathrm{S}=0.4 \mathrm{t}^{2}-0.04 \mathrm{t}^{3} / 3$ $S(20)-S(10)=26.6,26.7$ displacement is 56.7 m	M1 A1 B1 M1 A1 B1 [6] B1 M1 A1 M1 A1 B1	For integrating v Accept $0.4 \mathrm{t}^{2}-0.013 \mathrm{t}^{3}(+\mathrm{ct}+\mathrm{K}$, must be linear) For using $\mathrm{S}(10)=30$ to find K Not if S includes ct term Accept 56.6 to 56.7 , Adding 30 subsequently is not isw, hence B0 For integrating v Accept $0.4 \mathrm{t}^{2}-0.013 \mathrm{t}^{3}(+\mathrm{ct}+\mathrm{K}$, must be linear) Using limits of 10 and 20 (limits 0,10 M0A0B0) For 53.3-26.7 or better (Note $S(10)=26.7$ is fortuitously correct M0A0B0) Accept 56.6 to 56.7

Mark Scheme 4729 June 2007

$\mathbf{1}$	$40 \cos 35^{\circ}$	B1	
	WD $=40 \cos 35^{\circ} \times 100$	M1	
	3280 J	A1 3	ignore units

$\mathbf{2}$	$0=12 \sin 27^{\circ} \mathrm{t}-4.9 \mathrm{t}^{2}$ any correct.	M1	or $\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}(\mathrm{B} 2)$
	$\mathrm{t}=1.11 \ldots . . \mathrm{method}$ for total time	A1	correct formula only
	$\mathrm{R}=12 \cos 27^{\circ} \mathrm{xt}$	M1	$12^{2} \mathrm{x} \sin 54^{\circ} / 9.8$ sub in values
	11.9	A1 $\mathbf{4}$	11.9

$\mathbf{3}$ (i)	WD $=1 / 2 \times 250 \times 150^{2}-1 / 2 \times 250 \times 100^{2}$	M1	
	1560000	A1	1562500
	$450000=1560000 / \mathrm{t}$	M1	
	3.47	A1 4	
(ii)	F $=450000 / 120$	M1	
	3750	A1	
	$3750=250 \mathrm{a}$	M1	
	$15 \mathrm{~ms}^{-2}$	A1 $\mathbf{4}$	

$\mathbf{4}$ (i)	$x=7 \mathrm{t}$	B1	
	$y=21 \mathrm{t}-4.9 \mathrm{t}^{2}$	M1	or $-\mathrm{g} / 2$
		A1	
	$y=21 . x / 7-4.9 x^{2} / 49$	M1	
	$y=3 x-x^{2} / 10$	A1 $\mathbf{5}$	AG
(ii)	$-25=3 x-x^{2} / 10$ (must be -25)	M1	or method for total time $(5.26$)
	solving quadratic	M1	or $7 \times$ total time
	36.8 m	A1 $\mathbf{3}$	

$\mathbf{5 (i)}$	$1 / 2.70 .4^{2}$	M1	
	560 J	A1 2	
(ii)	$70 \times 9.8 \times 6$	M1	
	4120	A1 $\mathbf{2}$	4116
(iii)	60 d	B1	
	$8000=560+4120+60 \mathrm{~d}$	M1	4 terms
		A1 \boldsymbol{f}	\boldsymbol{J} their KE and PE
	55.4 m	A1 $\mathbf{4}$	

6 (i)	$5 \cos 30^{\circ}=0.3 \mathrm{x} 9.8+\mathrm{Scos} 60^{\circ}$	M1	res. vertically (3 parts with comps)
		A1	
	2.78 N	A1 3	
(ii)	$\mathrm{r}=0.4 \sin 30^{\circ}=0.2$	B1	may be on diagram
	$5 \sin 30^{\circ}+\operatorname{Ssin} 60^{\circ}=0.3 \times 0.2 \times \omega^{2}$	M1	res. horizontally (3 parts with comps)
	$9.04 \mathrm{rads}^{-1}$	A1 3	
(iii)	$\mathrm{v}=0.2 \times 9.04$	M1	or previous v via $\mathrm{mv}^{2} / \mathrm{r}$
	$\mathrm{KE}=1 / 2 \times 0.3 \times(0.2 \times 9.04)^{2}$	M1	
	0.491 J or 0.49	$\mathrm{A}^{1} \sqrt{ } 3$	\boldsymbol{f} their $\omega^{2} \times 0.006$

7 (i)	$1.8=-0.3+3 \mathrm{~m}$	M1		
	$\mathrm{m}=0.7$	A1 2	AG	
(ii)	$\mathrm{e}=4 / 6$	M1	accept 2/6 for M1	
	2/3	A1 2	accept 0.67	
(iii)	$\pm 3 \mathrm{f}$	B1		
	$1 / 3$ Bf($\mathrm{fl}^{\text {c }}$)	B1 2		
(iv)	$\mathrm{I}=3 \mathrm{fx} 0.7--3 \times 0.7$	M1	ok for only one minus sign for M1	
		A1		
	$\mathrm{I}=2.1(\mathrm{f}+1)$	A1 3	aef 2 marks only for -2.1(f+1)	
(v)	$0.3+6.3 / 4=0.3 a+0.7 b$	M1	can be - $0.7 b$	
	$3 a+7 b=18.75$	A1 *	aef	
	$2 / 3=(a-b) / 5 / 4$	M1	allow $\mathrm{e}=3 / 4$ or their e for M1	
	$3 a-3 b=5 / 2$	A1 *	aef * means dependent.	
	solve	M1		
	$a=2.5$	A1	(2.46) allow \pm (59/24)	
	$b=1.6$	A1 7	(1.625) allow \pm (13/8)	16

8 (i)	com of hemisphere 0.3 from O	B1	or 0.5 from base	
	com of cylinder $h / 2$ from O	B1		
	$\begin{aligned} & 0.6 \times 45=40 \times 0.5+(0.8+h / 2) \times 5 \quad \text { or } \\ & 45(\mathrm{~h}+0.2)=5 \mathrm{~h} / 2+40(\mathrm{~h}+0.3) \end{aligned}$	M1	or $40 \times 0.3-5 \times 2 / 2=45 \times 0.2$	
		A1	or $5(0.2+\mathrm{h} / 2)=40 \times 0.1$	
	$27=20+(0.8+h / 2) \times 5$	M1	solving	
	$h=1.2$	A1 6	AG	
(ii)	1.2 T	B1		
	0.8 F	B1		
	$0.8 \mathrm{~F}=1.2 \mathrm{~T}$	M1		
	$\mathrm{F}=3 \mathrm{~T} / 2$	A1 4	aef	
(iii)	$\mathrm{F}+\mathrm{T} \cos 30^{\circ}$	B1	or $45 \times 0.8 \sin 30^{\circ}$	
	$45 \sin 30^{\circ}$ must be involved in res.	B1	$\mathrm{Tx}\left(1.2+0.8 \cos 30^{\circ}\right)$	
	resolving parallel to the slope	M1	mom. about point of contact	
	$\mathrm{F}+\mathrm{T} \cos 30^{\circ}=45 \sin 30^{\circ} \quad$ aef	A1	$45.0 .8 \sin 30^{\circ}=\mathrm{T}\left(1.2+0.8 \cos 30^{\circ}\right)$	
	$\mathrm{T}=9.51$	A1		
	$\mathrm{F}=14.3$	A1 6		16
or	$\mathrm{T}+\mathrm{F} \cos 30^{\circ}=\mathrm{R} \sin 30^{\circ}$	B1	res. horizontally	
(iii)	$\mathrm{R} \cos 30^{\circ}+\mathrm{Fsin} 30^{\circ}=45$	B1	res. vertically	
	$\tan 30^{\circ}=\left(\mathrm{T}+\mathrm{F} \cos 30^{\circ}\right) /\left(45-\mathrm{Fsin} 30^{\circ}\right)$	M1	eliminating R	

Mark Scheme 4730 June 2007

$\left.\begin{array}{|lll|}\hline \text { ALTERNATIVE METHOD } & \text { M1 } & \begin{array}{l}\text { For using I }=\Delta \text { mv parallel to the } \\ \text { initial direction of motion } \\ \text { or parallel to the impulse }\end{array} \\ \begin{array}{lll}-0.6 \cos \alpha=0.057 \times 7 \cos \beta-0.057 \times 10 \\ \text { or } 0.6=0.057 \times 10 \cos \alpha+0.057 \times 7 \cos \gamma\end{array} & \text { A1 } & \text { M1 }\end{array} \begin{array}{l}\text { For using I }=\Delta \text { mv perpendicular } \\ \text { to the initial direction of motion } \\ \text { or perpendicular to the impulse }\end{array}\right]$

ALTERNATIVE METHOD FOR PART (iii)
$\begin{aligned} & {\left[\int \frac{1}{v^{2}} d v=-2 \int d t \rightarrow-1 / \mathrm{v}=-2 \mathrm{t}+\mathrm{A} \text {, and }\right.} \\ & \mathrm{A}=-1 / \mathrm{u}] \\ & -\mathrm{e}^{2 \mathrm{x}} / \mathrm{u}=-2 \mathrm{t}-1 / \mathrm{u} \\ & \mathrm{u}=6.70\end{aligned}$

M1 \quad For using $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$, separating variables, attempting to integrate and using $\mathrm{v}(0)=\mathrm{u}$
M1 \quad For substituting $v=u e^{-2 x}$
A1
A1 $4 \quad$ Accept $\left(\mathrm{e}^{4}-1\right) / 8$

5 (i)	M1	For taking moments of forces on BC about B
$80 \times 0.7 \cos 60^{\circ}=1.4 \mathrm{~T}$	A1	
Tension is 20 N	A1	
[$\mathrm{X}=20 \cos 30^{\circ}$]	M1	For resolving forces horizontally
Horizontal component is 17.3 N	A1ft	$\mathrm{ft} \mathrm{X}=\mathrm{T} \cos 30^{\circ}$
[$\mathrm{Y}=80-20 \sin 30^{\circ}$]	M1	For resolving forces vertically
Vertical component is 70 N	A1ft 7	$\mathrm{ft} \mathrm{Y}=80-\mathrm{T} \sin 30^{\circ}$
(ii)	M1	For taking moments of forces on AB , or on ABC , about A
$17.3 \times 1.4 \sin \alpha=(80 \times 0.7+70 \times 1.4) \cos \alpha$ or	A1ft	
$80 \mathrm{x} 0.7 \cos \alpha+80\left(1.4 \cos \alpha+0.7 \cos 60^{\circ}\right)=$		
$20 \cos 60^{\circ}\left(1.4 \cos \alpha+1.4 \cos 60^{\circ}\right)+$		
$20 \sin 60^{\circ}\left(1.4 \sin \alpha+14 \sin 60^{\circ}\right)$		
$[\tan \alpha=(1 / 280+70) / 17.3=11 / \sqrt{3}]$	M1	For obtaining a numerical expression for $\tan \alpha$
$\alpha=81.1^{\circ}$	A1 4	

ALTERNATIVE METHOD FOR PART (i)		
	M1	For taking moments of forces on BC about B
$\mathrm{Hx} 1.4 \sin 60^{\circ}+\mathrm{Vx} 1.4 \cos 60^{\circ}=80 \mathrm{x} 0.7 \cos 60^{\circ}$	A1	Where H and V are components of T
	M1	For using $\mathrm{H}=\mathrm{V} \sqrt{3}$ and solving simultaneous equations
Tension is 20 N	A1	
Horizontal component is 17.3 N	B1ft	ft value of H used to find T
[$\mathrm{Y}=80-\mathrm{V}$]	M1	For resolving forces vertically
Vertical component is 70 N	A1ft	ft value of V used to find T

FIRST ALTERNATIVE METHOD FOR

PART (ii)
$[160 \mathrm{~g}-2058 \mathrm{x} / 5.25=160 \mathrm{v} \mathrm{dv} / \mathrm{dx}]$

$\mathrm{v}^{2} / 2=\mathrm{gx}-1.225 \mathrm{x}^{2}(+\mathrm{C})$

$\mathrm{C}=-8.575$
$\left[\mathrm{v}(7)^{2}\right] / 2=68.6-60.025-8.575=0 \rightarrow \mathrm{P} \& Q$ just
reach the net

SECOND ALTERNATIVE METHOD FOR PART (ii)
$\ddot{x}=g-2.45 x \quad(=-2.45(x-4)) \quad$ B
M1 \quad For using $\mathrm{n}^{2}=2.45$ and

$$
\mathrm{v}^{2}=\mathrm{n}^{2}\left(\mathrm{~A}^{2}-(\mathrm{x}-4)^{2}\right)
$$

$3.5^{2}=2.45\left(\mathrm{~A}^{2}-(-2)^{2}\right) \quad(\mathrm{A}=3) \quad \mathrm{A}$
$[(4-2)+3] \quad$ M1
distance travelled downwards by P and $\mathrm{Q}=5 \rightarrow \mathrm{P} \& \mathrm{Q}$
A1 5
For using 'distance travelled downwards by P and $\mathrm{Q}=$ distance to new equilibrium position + A
just reach the net

Mark Scheme 4731 June 2007

1 (i)	$\begin{aligned} \text { Using } \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}, \quad 56 & =0+\frac{1}{2} \alpha \times 8^{2} \\ \alpha & =1.75 \mathrm{rads}^{-2} \end{aligned}$	M1 A1 2	
(ii)	$\begin{gathered} \text { Using } \omega_{1}^{2}=\omega_{0}^{2}+2 \alpha \theta, 36^{2}=20^{2}+2 \times 1.75 \theta \\ \theta=256 \mathrm{rad} \end{gathered}$	M1 A1 ft 2	ft is $448 \div \alpha$
2	$\begin{aligned} & \text { Volume is } \begin{aligned} \int_{0}^{a} \pi\left(4 a^{2}-x^{2}\right) \mathrm{d} x & =\pi\left[4 a^{2} x-\frac{1}{3} x^{3}\right]_{0}^{a} \\ & =\frac{11}{3} \pi a^{3} \end{aligned} \\ & \begin{aligned} \int_{0}^{a} \pi x\left(4 a^{2}-x^{2}\right) \mathrm{d} x \end{aligned} \\ & \quad=\pi\left[2 a^{2} x^{2}-\frac{1}{4} x^{4}\right]_{0}^{a} \\ & \quad=\frac{7}{4} \pi a^{4} \end{aligned} \quad \begin{aligned} & \bar{x}=\frac{\frac{7}{4} \pi a^{4}}{\frac{11}{3} \pi a^{3}} \\ & =\frac{21}{44} a \end{aligned}$	M1 A1 M1 A1 A1 M1 A1	π may be omitted throughout (Limits not required) (Limits not required) for $\frac{\int x y^{2} \mathrm{~d} x}{\int y^{2} \mathrm{~d} x}$
3 (i)	$I=6.2+2.8=9.0 \mathrm{~kg} \mathrm{~m}^{2}$	B1 1	
(ii)	WD against frictional couple is $L \times \frac{1}{2} \pi$ Loss of PE is $6 \times 9.8 \times 1.3 \quad(=76.44)$ Gain of KE is $\frac{1}{2} \times 9.0 \times 2.4^{2} \quad(=25.92)$ By work-energy principle, $\begin{aligned} L \times \frac{1}{2} \pi & =76.44-25.92 \\ L & =32.2 \mathrm{~N} \mathrm{~m} \end{aligned}$	B1 B1 B1 ft M1 A1	Equation involving WD, KE and PE Accept 32.1 to 32.2
(iii)	$\begin{aligned} 6 \times 9.8 \times 0.8-L & =I \alpha \\ \alpha & =1.65 \mathrm{rads}^{-2} \end{aligned}$	M1 A1 ft A1	Moments equation

4 (i)	MI of elemental disc about a diameter is $\frac{1}{4}\left(\frac{M}{3 a} \delta x\right) a^{2}$ MI of elemental disc about $A B$ is $\begin{aligned} & \frac{1}{4}\left(\frac{M}{3 a} \delta x\right) a^{2}+\left(\frac{M}{3 a} \delta x\right) x^{2} \\ I= & \frac{M}{3 a} \int_{0}^{3 a}\left(\frac{1}{4} a^{2}+x^{2}\right) \mathrm{d} x \\ = & \frac{M}{3 a}\left[\frac{1}{4} a^{2} x+\frac{1}{3} x^{3}\right]_{0}^{3 a} \\ = & \frac{M}{3 a}\left(\frac{3}{4} a^{3}+9 a^{3}\right) \\ = & M\left(\frac{1}{4} a^{2}+3 a^{2}\right) \\ = & \frac{13}{4} M a^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \\ & \text { M1 } \\ & \text { A1 (ag) } \end{aligned}$ 7	$\frac{M}{3 a}$ may be $\rho \pi a^{2}$ throughout (condone use of $\rho=1$) Using parallel axes rule (can award A1 for $\frac{1}{4} m a^{2}+m x^{2}$) Integrating MI of disc about $A B$ Correct integral expression for I Obtaining an expression for I in terms of M and a Dependent on previous M1
(ii)	$\begin{aligned} & \text { Period is } 2 \pi \sqrt{\frac{I}{M g h}} \\ & \quad=2 \pi \sqrt{\frac{\frac{13}{4} M a^{2}}{M g \frac{3}{2} a}} \\ & =2 \pi \sqrt{\frac{13 a}{6 g}} \end{aligned}$		or $-M g h \sin \theta=I \ddot{\theta}$

5 (i)	$\begin{aligned} \frac{\sin \theta}{12} & =\frac{\sin 115}{16} \\ \theta & =42.8^{\circ} \end{aligned}$ Bearing of \mathbf{v}_{B} is 007.2° $\begin{aligned} \frac{u}{\sin 22.2} & =\frac{16}{\sin 115} \\ u & =6.66 \end{aligned}$ Time taken is $\frac{2400}{6.664}=360 \mathrm{~s}$		Relative velocity on bearing 050 Correct velocity diagram; or $\binom{u \sin 50}{u \cos 50}=\binom{16 \sin \alpha}{16 \cos \alpha}-\binom{12 \sin 345}{12 \cos 345}$ or eliminating u (or α) or obtaining equation for u (or α) For equations in α and t M1*M1A1 for equations M1 for eliminating t (or α) Al for $\alpha=7.2$ M1A1 ft for equation for t (or α) Al cao for $t=360$
(ii)	$\begin{aligned} \cos \phi & =\frac{10}{12} \\ \phi & =33.6^{\circ} \end{aligned}$ Bearing of \mathbf{v}_{B} is 018.6°		Relative velocity perpendicular to \mathbf{v}_{B} Correct velocity diagram For alternative methods: M2 for a completely correct method A2 for 018.6 (give A1 for a correct relevant angle)

6 (i)	$\begin{aligned} & I=\frac{1}{3} m a^{2}+m\left(\frac{1}{3} a\right)^{2} \\ & =\frac{4}{9} m a^{2} \\ & m g\left(\frac{1}{3} a \cos \theta\right)=I \alpha \\ & \quad \alpha=\frac{\frac{1}{3} m g a \cos \theta}{\frac{4}{9} m a^{2}}=\frac{3 g \cos \theta}{4 a} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 (ag) } \end{aligned}$	Using parallel axes rule
(ii)	By conservation of energy, $\begin{aligned} \frac{1}{2} I \omega^{2} & =m g\left(\frac{1}{3} a \sin \theta\right) \\ \frac{2}{9} m a^{2} \omega^{2} & =\frac{1}{3} m g a \sin \theta \\ \omega & =\sqrt{\frac{3 g \sin \theta}{2 a}} \end{aligned}$	M1 A1 ft A1	Condone $\omega^{2}=\frac{3 g \sin \theta}{2 a}$
	$\text { OR } \begin{aligned} \omega \frac{\mathrm{d} \omega}{\mathrm{~d} \theta} & =\frac{3 g \cos \theta}{4 a} \\ \frac{1}{2} \omega^{2} & =\int \frac{3 g \cos \theta}{4 a} \mathrm{~d} \theta \\ & =\frac{3 g \sin \theta}{4 a}(+C) \\ \omega & =\sqrt{\frac{3 g \sin \theta}{2 a}} \end{aligned}$		
(iii)	Acceleration parallel to rod is $\left(\frac{1}{3} a\right) \omega^{2}$ $\begin{aligned} F-m g \sin \theta & =m\left(\frac{1}{3} a\right) \omega^{2} \\ F-m g \sin \theta & =\frac{1}{2} m g \sin \theta \\ F & =\frac{3}{2} m g \sin \theta \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Radial equation with 3 terms
	Acceleration perpendicular to rod is $\left(\frac{1}{3} a\right) \alpha$ $\begin{aligned} m g \cos \theta-R & =m\left(\frac{1}{3} a\right) \alpha \\ m g \cos \theta-R & =\frac{1}{4} m g \cos \theta \\ R & =\frac{3}{4} m g \cos \theta \end{aligned}$	B1 ft M1 A1 6	ft is $r \alpha$ with r the same as before Transverse equation with 3 terms
	$\begin{aligned} \text { OR } & R\left(\frac{1}{3} a\right)=I_{G} \alpha \\ & R\left(\frac{1}{3} a\right)=\left(\frac{1}{3} m a^{2}\right)\left(\frac{3 g \cos \theta}{4 a}\right) \\ & R=\frac{3}{4} m g \cos \theta \end{aligned}$		Must use I_{G}
(iv)	On the point of slipping, $F=\mu R$ $\begin{aligned} \frac{3}{2} m g \sin \theta & =\mu\left(\frac{3}{4} m g \cos \theta\right) \\ \tan \theta & =\frac{1}{2} \mu \end{aligned}$	M1 A1 (ag)	Correctly obtained Dependent on 6 marks earned in (iii)

7 (i)	$\begin{aligned} \text { GPE } & =(-) m g(2 a \cos \theta) \cos \theta \\ \text { EPE } & =\frac{\frac{1}{2} m g}{2 a}(A R-a)^{2} \\ & =\frac{\frac{1}{2} m g}{2 a}(2 a \cos \theta-a)^{2} \\ V & =\frac{1}{4} m g a(2 \cos \theta-1)^{2}-2 m g a \cos ^{2} \theta \\ = & m g a\left(\cos ^{2} \theta-\cos \theta+\frac{1}{4}-2 \cos ^{2} \theta\right) \\ = & m g a\left(\frac{1}{4}-\cos \theta-\cos ^{2} \theta\right) \end{aligned}$	B1 M1 A1 A1 (ag)	or (-) $m g(a+a \cos 2 \theta)$
(ii)	$\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} \theta}=m g a(\sin \theta+2 \cos \theta \sin \theta) \\ & \quad=m g a \sin \theta(1+2 \cos \theta) \\ & \text { Equilibrium when } \frac{\mathrm{d} V}{\mathrm{~d} \theta}=0 \\ & \quad \text { ie when } \theta=0 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 (ag) } \\ & \hline \end{aligned}$	
(iii)	KE is $\frac{1}{2} m(2 a \dot{\theta})^{2}$ $2 m a^{2} \dot{\theta}^{2}+V=$ constant Differentiating with respect to t, $\begin{array}{r} 4 m a^{2} \ddot{\theta} \ddot{\theta}+\frac{\mathrm{d} V}{\mathrm{~d} \theta} \dot{\theta}=0 \\ 4 m a^{2} \dot{\theta} \ddot{\theta}+m g a \sin \theta(1+2 \cos \theta) \dot{\theta}=0 \\ \ddot{\theta}=-\frac{g}{4 a} \sin \theta(1+2 \cos \theta) \end{array}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \mathrm{ft} \\ & \mathrm{~A} 1(\mathrm{ag}) \end{aligned}$	(can award this M1 if no KE term) $S R \quad$ B2 (replacing the last 3 marks) for the given result correctly obtained by differentiating w.r.t. θ
(iv)	When θ is small, $\sin \theta \approx \theta, \cos \theta \approx 1$ $\ddot{\theta} \approx-\frac{g}{4 a} \theta(1+2)=-\frac{3 g}{4 a} \theta$ Period is $2 \pi \sqrt{\frac{4 a}{3 g}}$	\square	

Mark Scheme 4732 June 2007

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW.

1	$\begin{aligned} & (0 \times 0.1)+1 \times 0.2+2 \times 0.3+3 \times 0.4 \\ & =2(.0) \\ & \left(0^{2} \times 0.1\right)+1 \times 0.2+2^{2} \times 0.3+3^{2} \times 0.4 \quad(=5) \\ & -2^{2} \\ & =1 \end{aligned}$	M1 A1 M1 M1 A1 5	≥ 2 non-zero terms correct eg $\div 4:$ M0 ≥ 2 non-zero terms correct $\div 4: \mathrm{M} 0$ Indep, ft their μ. Dep +ve result $\begin{gathered} (-2)^{2} \times 0.1+(-1)^{2} \times 0.2+0^{2} \times 0.3+1^{2} \times 0.4: \mathrm{M} 2 \\ \geq 2 \text { non- } 0 \text { correct: } \mathrm{M} 1 \quad \div 4: \mathrm{M} 0 \end{gathered}$
Total		5	
2		$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{array}$	Consistent attempt rank other judge\quadRCFUP 35214 31452 12345 54321 All $5 d^{2}$ attempted \& added. Dep ranks att'd Dep $2^{\text {nd }}$ M1
Total		5	
3 i	$\begin{aligned} & { }^{15} \mathrm{C}_{7} \text { or }{ }^{15!}{ }_{778!} \\ & 6435 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 2 \\ & \hline \end{aligned}$	
ii	${ }^{6} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4} \text { or }{ }^{6!/ 3!3!} \times{ }^{9!/ 4!5!}$ 2520	$\mathrm{M1}$ A1 2	$\begin{aligned} & \text { Alone except allow } \div{ }^{15} \mathrm{C}_{7} \\ & \text { Or }{ }^{6} \mathrm{P}_{3} \times{ }^{9} \mathrm{P}_{4} \text { or }{ }^{6!3!} \times{ }^{9!/ 5!} \text { Allow } \div{ }^{15} \mathrm{P}_{7} \\ & 362880 \\ & \text { NB not } 6!3!!^{9!} / 4! \end{aligned}$
Total		4	
4ia	1/3 oe	B1 1	B \rightarrow W MR: $\max (\mathrm{a}) \mathrm{BO}(\mathrm{b}) \mathrm{M} 1 \mathrm{M} 1$ (c)B1M1
b	$\begin{aligned} & \mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{WB}) \text { attempted } \\ & =4 / 10 \times 3 / 9+6 / 10 \times 4 / 9 \quad \text { or } 2 / 15+4 / 15 \\ & =2 / 5 \mathrm{oe} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Or } 4 / 10 \times 3 / 9 \mathrm{OR} / 10 \times 4 / 9 \text { correct } \\ & \mathrm{NB}^{4} / 10 \times 4 / 10+6 / 10 \times 4 / 10=2 / 5: \text { M1M0A0 } \end{aligned}$
c	Denoms $9 \& 8$ seen or implied $3 / 9 \times 2 / 8+6 / 9 \times 3 / 8$ $=1 / 3 \mathrm{oe}$	B1 M1 A1 3	$\mathrm{Or}^{2} / 15$ as numerator May not see wking
ii	P (Blue) not constant or discs not indep, so no	B1 1	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials NOT because without repl Ignore extra
Total		8	

5 i	$\begin{aligned} & 1991 \\ & 100000 \text { to } 110000 \end{aligned}$	B1 ind B1 ind 2	Or fewer in 2001 Allow digits 100 to 110
iia	$\begin{aligned} & \text { Median }=29 \text { to } 29.9 \\ & \text { Quartiles } 33 \text { to } 34,24.5 \text { to } 26 \\ & =7.5 \text { to } 9.5 \\ & 140 \text { to } 155 \\ & 23 \text { to } 26.3 \% \end{aligned}$	B1 M1 A1 M1 A1 5	Or one correct quartile and subtr NOT from incorrect wking $\times 1000$, but allow without Rnded to 1 dp or integer 73.7 to 77% : SC1
b	Older Median (or ave) greater \} $\%$ older mothers greater oe\} \% younger mothers less oe\}	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Or 1991 younger Any two Or 1991 steeper so more younger: B2 NOT mean gter Ignore extra
Total		10	

6ia	$\begin{aligned} & \text { Correct subst in } \geq \text { two } S \text { formulae } \\ & \frac{767-\frac{60 \times 72}{8}}{\underbrace{\text { or }}}{ }^{\frac{60^{2}}{\left(1148-\frac{227}{8}\right)\left(810-\frac{72^{2}}{8}\right)}} \\ & =0.675(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \end{array}$	Any version All correct. Or $\frac{767-8 \times 7.5 \times 9}{/\left(\left(1148-8 \times 7.5^{2}\right)\left(810-8 \times 9^{2}\right)\right)}$ or correct substn in any correct formula for r
b	1 y always increases with x or ranks same oe	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1 , or increases because nearer to st line	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because y still increasing with x oe	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Σd^{2} still 0 . Still same order. Ignore extra NOT differences still the same. NOT $\mathrm{ft}(\mathrm{i})(\mathrm{b})$
iii	13.8 to 14.0	B1 1	
iv	(iii) or graph or diag or my est Takes account of curve	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Must be clear which est. Can be implied. "This est" probably \Rightarrow using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	
7 i	P (contains voucher) constant oe Packets indep oe	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2 2	B1 for 0.9456 or 0.946 or 0.997 (2) or for 7 terms correct, allow one omit or extra NOT $1-0.9857=0.0143$ (see (iii))
iii	$\begin{aligned} & (1-0.9857) \\ & =0.014(3)(2 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { B1ft } \\ & 1 \end{aligned}$	Allow 1-their (ii) correctly calc'd
iv	$\mathrm{B}(11,0.25)$ or 6 in 11 wks stated or impl ${ }^{11} \mathrm{C}_{6} \times 075^{5} \times 0.25^{6} \quad(=0.0267663)$ $\mathrm{P}(6$ from 11$) \times 0.25$ $=0.00669$ or $6.69 \times 10^{-3}(3 \mathrm{sfs})$	B1 M1 M1 A1 4	$\begin{aligned} & \text { or } 0.75^{a} \times 0.25^{b}(a+b=11) \text { or }{ }^{11} \mathrm{C}_{6} \\ & \text { dep B1 } \end{aligned}$
Total		9	

8 i	$\begin{aligned} & \text { V0.04 }(=0.2) \\ & (1-\text { their } \sqrt{ } 0.04)^{2} \\ & =0.64 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	
ii	$\begin{aligned} & 1-p \text { seen } \quad \text { M1 for either } \\ & 2 p(1-p)=0.42 \text { or } p(1-p)=0.21 \text { oe } \\ & 2 p^{2}-2 p+0.42(=0) \text { or } p^{2}-p+0.21(=0) \\ & \frac{2 \pm \sqrt{\left((-2)^{2}-4 \times 0.42\right)}}{2 \times 2} \text { or } \frac{1 \pm \sqrt{ }\left((-1)^{2}-4 \times 0.21\right)}{2 \times 1} \\ & \text { or }(p-0.7)(p-0.3)=0 \text { or }(10 p-7)(10 p-3)=0 \\ & p=0.7 \text { or } 0.3 \end{aligned}$	B1 M1 M1 M1 A1 5	$2 p q=0.42$ or $p q=0.21$ Allow $p q=0.42$ or opp signs, correct terms any order $(=0)$ oe Correct Dep B1M1M1 Any corr subst'n or fact'n Omit 2 in $2^{\text {nd }}$ line: max B1M1M0M0A0 One corr ans with no or inadeq wking: SC 1 eg $0.6 \times 0.7=0.42 \Rightarrow p=0.7$ or 0.6 $\begin{array}{ll} \left.\begin{array}{l} p^{2}+2 p q+q^{2}=1 \\ p^{2}+q^{2}=0.58 \end{array}\right\} & \text { B1 } \\ \left.\begin{array}{l} 1=0.21 / q \end{array}\right\} & \\ p^{2}-0.58 p^{2}+0.0441=0 & \text { M1 } \\ \text { corr subst'n or fact'n } & \text { M1 } \end{array}$ $$
Total		8	
9 ia	$\begin{aligned} & 1 /^{1 / 5} \\ & =5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
b	$\left[\begin{array}{l} (4 / 5)^{3} \times 1 / 5 \\ =64 / 650 \text { or } 0.102(3 \mathrm{sfs}) \end{array}\right.$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	
c	$\begin{aligned} & (4 / 5)^{4} \\ & =256 / 625 \text { or ar.t } 0.410(3 \mathrm{sfs}) \text { or } 0.41 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \\ \mathrm{~A} 1 & 2 \end{array}$	$\begin{gathered} \text { or } 1-\left(1 / 5+4 / 5 \times 1 / 5+(4 / 5)^{2} \times 1 / 5+(4 / 5)^{3} \times 1 / 5\right) \\ \text { NOT } 1-(4 / 5)^{4} \end{gathered}$
iia	$\mathrm{P}(Y=1)=p, \mathrm{P}(Y=3)=q^{2} p, \mathrm{P}(Y=5)=q^{4} p$	B1 1	$\begin{aligned} & \mathrm{P}(Y=1)+\mathrm{P}(Y=3)+\mathrm{P}(Y=5)=p+q^{2} p+q^{4} p \\ & p, p(1-p)^{2}, p(1-p)^{4} \\ & q^{1-1}, q^{3-1}, q^{5-1} \end{aligned}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $>\text { two terms }$
b	Recog that c.r. $=q^{2}$ or $(1-p)^{2}$ $\begin{aligned} & S_{\infty}=\frac{p}{1-q^{2}} \text { or } \frac{p}{1-(1-p)^{2}} \\ & \mathrm{P}(\text { odd })=\frac{1-q}{1-q^{2}} \\ & =\frac{1-q}{(1-q)(1+q)} \text { Must see this step for A1 } \\ & \left(=\frac{1}{1+q} \quad \text { AG }\right) \end{aligned}$	M1 M1 M1 A1 4	$\begin{aligned} & \left(=\frac{p}{2 p-p^{2}}\right)=\frac{p}{p(2-p)} \\ & \left(=\frac{1}{2-\bar{p}}\right)=\frac{1}{2-(1-q)} \end{aligned}$

Mark Scheme 4733

 June 2007

7	(i)		$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	3	Horizontal straight line Positive parabola, symmetric about 0 Completely correct, including correct relationship between two Don't need vertical lines or horizontal lines outside range, but don't give last B1 if horizontal line continues past " ± 1 "
		S is equally likely to take any value in range, T is more likely at extremities	B2	2	Correct statement about distributions (not graphs) [Partial statement, or correct description for one only: B1]
		$\begin{aligned} & \int_{t}^{1} \frac{3}{2} x^{2} d x=\left[\frac{x^{3}}{2}\right]_{t}^{1} \\ & 1 / 2\left(1-t^{3}\right)=0.2 \text { or } 1 / 2\left(t^{3}+1\right)=0.8 \\ & t^{3}=0.6 \\ & t=0.8434 \end{aligned}$	M1 B1 M1 M1 A1	5	Integrate $\mathrm{f}(x)$ with limits $(-1, t)$ or $(t, 1)$ [recoverable if t used later] Correct indefinite integral Equate to 0.2 , or 0.8 if $[-1, t]$ used Solve cubic equation to find t Answer, in range [0.843, 0.844]
8	(i)	$\begin{array}{ll} \frac{64.2-63}{\sqrt{12.25 / 23}} & =1.644 \\ \mathrm{P}(z>1.644) \\ =0.05 \end{array}$	M1dep A1 dep M1 A1	4	Standardise 64.2 with $\sqrt{ } n$ $z=1.644$ or 1.645 , must be + Find $\Phi(z)$, answer <0.5 Answer, a.r.t. 0.05 or 5.0%
	(ii)	$\text { (a) } 63+1.645 \times \frac{3.5}{\sqrt{50}}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	3	$63+3.5 \times k / \sqrt{5} 0, k$ from Φ^{-1}, not $k=1.645$ (allow 1.64, 1.65) Answer, a.r.t. 63.8, allow $>, \geq,=$, c.w.o.
		(b) $\quad \begin{aligned} & \mathrm{P}(<63.8 \mid \mu=65) \\ & \\ & \\ & \\ & \\ & \\ & \\ & 3.51 \cdot 5-65 \\ & 0.0083\end{aligned}$	M1 M1 A1 A1	4	Use of correct meaning of Type II Standardise their c with $\sqrt{ } 50$ $z=(\pm) 2.40$ [or -2.424 or -2.404 etc] Answer, a.r.t. 0.008 [eg, 0.00767]
	(iii)	B better: Type II error smaller (and same Type I error)	B2 $\sqrt{ }$	2	This answer: B2. "B because sample bigger": B1. [SR: Partial answer: B1]
9	(a)	$\begin{aligned} & n p>5 \text { and } n q>5 \\ & 0.75 n>5 \text { is relevant } \\ & n>20 \end{aligned}$	$\begin{gathered} \mathrm{M} 2 \\ \\ \text { A1 } \end{gathered}$	3	$\begin{aligned} & \text { Use either } n q>5 \text { or } n p q>5 \\ & \quad \quad \quad \text { SR: If M0, use } n p>5 \text {, or " } n=20 \text { " seen: M1] } \\ & \text { Final answer } n>20 \text { or } n \geq 20 \text { only } \end{aligned}$
	(b)	(i) $\begin{aligned} & 70.5-\mu=1.75 \sigma \\ & \mu-46.5=2.25 \sigma \end{aligned}$ Solve simultaneously $\begin{aligned} \mu & =60 \\ \sigma & =6 \end{aligned}$	M1 A1 B1 M1 A1 $\sqrt{ }$ A1 $\sqrt{ }$	6	Standardise once, and equate to $\Phi^{-1}, \pm \mathrm{cc}$ Standardise twice, signs correct, cc correct Both 1.75 and 2.25 Correct solution method to get one variable μ, a.r.t. 60.0 or ± 154.5 σ, a.r.t. 6.00 [Wrong cc (below): A1 both] [SR: $\sigma^{2}:$ M1A0B1M1A1A0]
		$\text { (ii) } \begin{array}{ll} n p=60, n p q=36 \\ & q=36 / 60=0.6 \\ & p=0.4 \\ & n=150 \end{array}$	M1dep depM1 A1V A1 $\sqrt{ }$	4	$n p=60$ and $n p q=6^{2}$ or 6 Solve to get q or p or n $p=0.4 \sqrt{ }$ on wrong cc or z $n=150 \sqrt{ }$ on wrong cc or z

		σ	μ	q	$p(\pm 0.01)$	n
70.5	46.5	6	$\begin{gathered} 60 \\ 60.062 \end{gathered}$	0.6	0.4	150
71	46	6.25	$\begin{gathered} 5 \\ 60.562 \end{gathered}$	0.6504	0.3496	171.8
71.5	46.5	6.25	$\begin{gathered} 5 \\ 59.562 \end{gathered}$	0.6450	0.3550	170.6
70.5	45.5	6.25	5	0.6558	0.3442	173.0
71.5	45.5	6.5	60.125	0.7027	0.2973	202.2
70	46	6	59.5	0.6050	0.3950	150.6

Mark Scheme 4734 June 2007

1	$\int_{0}^{1} a \mathrm{~d} x+\int_{1}^{\infty} \frac{a}{x^{2}} \mathrm{~d} x=1$	M1		For sum of integrals =1
	$[a x]_{0}^{1}+\left[-\frac{a}{x^{3}}\right]_{1}^{\infty}=1$	A1		For second integral.
	$\begin{aligned} & a \\ & a=1 / 2 \end{aligned}+\quad a=1$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	For second a Or from $F(x) \quad$ M1A1 then $F(\infty)=1 \mathrm{M} 1, \quad \mathrm{a}=1 / 2 \mathrm{~A} 1$
2	(i) $\bar{X}_{I} \square \mathrm{~N}\left(5, \frac{0.7^{2}}{20}\right)$	B1		If no parameters allow in (ii)
	$\bar{X}_{E} \square \mathrm{~N}\left(4.5, \frac{0.5^{2}}{25}\right)$	B1	2	If $0.7 / 20,0.5 / 25$ then B 1 for both, with means in (ii)
	$\text { (ii) Use } \bar{X}_{I}-\bar{X}_{E} \square N\left(0.5, \sigma^{2}\right), \begin{aligned} & \sigma^{2}=0.49 / 20+0.25 / 25 \\ & 1-\Phi([1-0.5] / \sigma) \\ & =0.0036 \text { or } 0.0035 \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	$\text { OR } \bar{X}_{I}-\bar{X}_{E}-1 \square \mathrm{~N}\left(-0.5, \sigma^{2}\right)$ cao RH probability implied. If $0.7,0.5$ in σ^{2}, M1A1B0M1A1 for 0.165
3	Assumes differences form a random sample from a normal distribution. $\begin{aligned} & \mathrm{H}_{0}: \mu=0, \mathrm{H}_{1}: \mu>0 \\ & \bar{x}=17.2 / 12 ; \quad s^{2}=10.155 \mathrm{AEF} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1B1 } \end{aligned}$	B1	Other letters if defined; or in words Or (12/11)(136.36/12-(17.2/12) $\left.)^{2}\right)$ aef
	EITHER: $t=\frac{\bar{x}}{\sqrt{s^{2} / 12}}(+$ or -$)$	M1		With 12 or 9.309/11
	$=1.558$	A1		Must be positive. Accept 1.56
	1.363 seen $1.558>1.363$, so reject H_{0} and accept that there that the readings from the aneroid device overestimate blood pressure on average	B1 B1 $\sqrt{ }$		Allow CV of 1.372 or 1.356 evidence Explicit comparison of CV(not with +) and conclusion in context.
	OR: For critical region or critical value of \bar{x} $1.363 \sqrt{ }\left(s^{2} / 12\right)$ Giving 1.25(3) Compare 1.43(3) with 1.25(3) Conclusion in context	M1B1 A1 B1 $\sqrt{ }$	8	B1 for correct \boldsymbol{t}

6
(i) $\hat{p}=62 / 200=0.31$

Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha}\left(1-\hat{p}_{\alpha}\right)}{200}}$
$z=1.96$
Correct variance estimate
(0.2459,0.3741)

B1
M1
B1 Seen
A1 $\sqrt{ }$
A1 5
aef
With 200 or 199
$\mathrm{ft} \hat{p}$
art (0.246, 0.374)
(ii)EITHER: Sample proportion has an approximate normal distribution
OR: Variance is an estimate
B1 1
Not \hat{p} is an estimate, unless variance mentioned
(iii) $\mathrm{H}_{0}: p_{\alpha}=p_{\beta}, \mathrm{H}_{1:} p_{\alpha} \neq p_{\beta}$
$\hat{p}=(62+35) /(200+150)$
B1
aef

EITHER: $\quad z=(\pm) \frac{62 / 200-35 / 150}{\sqrt{\hat{p} \hat{q}\left(200^{-1}+150^{-1}\right)}}$
M1
B1 $\sqrt{ }$
$=1.586$
A1
$(-1.96<) 1.586<1.96$
M1
Do not reject H_{0} - there is insufficient
evidence of a difference in proportions.

OR: $p_{s \alpha}-p_{s \beta}=z s$
$\mathrm{s}=\sqrt{ }\left(0.277 \times 0.723\left(200^{-1}+150^{-1}\right)\right)$
CV of $p_{s \alpha}-p_{s \beta}=0.0948$ or 0.095
Compare $p_{s \alpha}-p_{s \beta}=0.0767$ with their 0.0948
A1

Do not reject H_{0} and accept that there is insufficient evidence of a difference in proportions

M1
B1 $\sqrt{ }$
A1
A1
M1

A1
s^{2} with, $\hat{p}, 200,150$ (or 199,149)
Evidence of correct variance estimate.
Ft \hat{p}
Rounding to 1.58 or 1.59
Correct comparison with ± 1.96
SR: If variance $\mathrm{p}_{1} \mathrm{q}_{1} / \mathrm{n}_{1}+\mathrm{p}_{2} \mathrm{q}_{2} / \mathrm{n}_{2}$ used then: B0M1B0A1(for $\mathrm{z}=1.61$ or 1.62)M1A1 Max $4 / 6$.

Ft \hat{p}
\hat{p}

Conditional on $\mathrm{z}=1.96$

7 $\text { (i) } \begin{aligned} \mathrm{G}(y) & =\mathrm{P}(Y \leq y) \\ & =\mathrm{P}\left(x^{2} \geq 1 / y\right) \quad[\text { or } \mathrm{P}(X>1 / \sqrt{ } y)] \\ & =1-\mathrm{F}(1 / \sqrt{ } y) \\ & = \begin{cases}0 & y \leq 0, \\ y^{2} & 0 \leq y \leq 1, \\ (1 & y>1 .)\end{cases} \end{aligned}$	M1 A1 A1 A1	4	May be implied by following line Accept strict inequalities $\begin{array}{rlrl} \operatorname{Or} \mathrm{F}(x) & =\mathrm{P}(X \leq x) \quad=\mathrm{P}\left(Y \geq 1 / x^{2}\right) & \mathrm{M} 1 \\ & =1-\mathrm{P}\left(Y<1 / x^{2}\right) & & \text { A1 } \\ & =1-\mathrm{G}(y) \quad ; \text { etc } & & \text { A1 A1 } \end{array}$
(ii) Differentiate their $\mathrm{G}(y)$ to obtain $\mathrm{g}(y)=2 y$ for $0<\mathrm{y} \leq 1 \mathrm{AG}$ obtained	M1	A1	2 Only from G correctly
$\text { (iii) } \begin{aligned} & \int_{0}^{1} 2 y(\sqrt[3]{y} \mathrm{~d} y \\ = & {\left[6 y^{7 / 3} / 7\right] } \\ = & 6 / 7 \end{aligned}$	M1 B1 A1	3	Unsimplified, but with limits $\begin{aligned} & \text { OR: Find } \mathrm{f}(\mathrm{x}), \int_{1}^{\infty} x^{-2 / 3} \mathrm{f}(x) \mathrm{d} x \\ & \quad=\left[4 x^{-14 / 3} /(14 / 3)\right] ;{ }^{6 / 7} \mathrm{~B} 1 \mathrm{~A} 1 \\ & \text { OR: Find } \mathrm{H}(\mathrm{z}), Z=Y^{1 / 3} \end{aligned}$
$8 \quad$ (i) $\mathrm{P}(20 \leq y<25)=\Phi(0)-\Phi(-5 / \sqrt{ }(20))$ Multiply by 50 to give 18.41 AG 18.41 for $25 \leq y<30$ and 6.59 for $y<20, y \geq 30$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	
(ii) $\mathrm{H}_{0}: \mathrm{N}(25,20)$ fits data $\begin{array}{rl} \chi^{2}= & 3.59^{2} / 6.59+8.59^{2} / 18.41+6.41^{2} / 18.41 \\ \quad & +1.41^{2} / 6.59 \\ = & 8.497 \\ 8.497 & 7.815 \end{array}$ Accept that $\mathrm{N}(25,20)$ is not a good fit	B1 M1V A1 M1 A1	5	OR $Y \sim \mathrm{~N}(25,20)$ ft values from (i) art 8.5
$\begin{aligned} & \text { (iii) Use } 24.91 \pm z \sqrt{ }(20 / 50) \\ & \mathrm{z}=2.326 \\ & (23.44,26.38) \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \mathbf{3} \end{aligned}$	With $\sqrt{ }(20 / 50)$ art $(23.4,26.4)$ Must be interval
(iv) No- Sample size large enough to apply CLT Sample mean will be (approximately) normally distributed whatever the distribution of Y	B1 B1	2	Refer to large sample size Refer to normality of sample mean

Mark Scheme 4735 June 2007

Statistics 4

$\begin{aligned} & \text { (i) Use } \mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=1-\mathrm{P}(A \cup B) \\ & \text { Use } \mathrm{P}(A \cap B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cup B) \\ & = \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	Or $c=1-\mathrm{P}(A \cup B)$
(ii) $\mathrm{P}(B \mid A)=(c-0.1) / 0.3$ Use $0 \leq p \leq 1$ to obtain $0.1<c<0.4 \mathrm{AG}$	$\begin{aligned} & \text { B1 } \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Shown clearly
$2 \quad \mathrm{H}_{0}: m_{n}=m_{s}, \mathrm{H}_{1}: m_{n} \neq m_{s}$ Use Wilcoxon rank sum test 596468778085889098 N N N S N S N S S $R_{m}=4+6+8+9=27$ $40-27=13$ $W=13$ Compare correctly with correct CV, !2 Do not reject H_{0}. There is no evidence of a difference in the median pulse rates of the two populations.	$\begin{array}{ll}\text { B1 } & \\ \text { M1 } & \\ \text { A1 } \\ \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \\ \text { A1 } & 7\end{array}$	Medians; both hypotheses 'Population medians' if words Rank and identify M0 if normal approx. used Quote critical region or state that $13>12 . \quad$ M0 if $\mathrm{W}=27$ Conclusion in context.
$\begin{aligned} & 3 \text { (i) Use marginal distributions to obtain } \\ & \mathrm{E}(X)=-0.4, \quad \mathrm{E}(Y)=1.5 \\ & \mathrm{E}(X Y)=-0.24+0.04-0.52+0.12 \\ & \operatorname{Cov}(X, Y)=-0.6+0.6=0 \mathrm{AG} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	
$\begin{aligned} \text { (ii) } \mathrm{P}(X=-1 \mid Y=2) & =0.26 / 0.5=0.52 \\ \mathrm{P}(X=0 \mid Y=2) & =0.18 / 0.5=0.36 \\ \mathrm{P}(X=1 \mid Y=2) & =0.12 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ & \\ \text { A1 } & \mathbf{2} \end{array}$	Correct method for any one All correct SR: B1 if no method indicated

4 (i) $\mathrm{H}_{0}: m=2.70, \mathrm{H}_{1}: m>2.7$ Subtract 2.70 from each value and count the number of positive signs Obtain 13 Use $\mathrm{B}(20,1 / 2)$ to obtain $\mathrm{P}(X \geq 13)=0.1316(0.132)$ Compare correctly with 0.05 Do not reject H_{0}. Conclude that there is insufficient evidence to claim that median level of impurity is greater than 2.70	B1 M1 A1 M1 A1 M1 A1 7	In terms of medians Allow just 'medians' here For finding tail probability Or CR: $\mathrm{X} \geq 15 \mathrm{M} 1 \mathrm{~A} 1$ Or: $\mathrm{N}(10,5), \mathrm{p}=0.132$
(ii)Wilcoxon signed rank test Advantage: More powerful (uses more formation) Disadvantage: This test requires a symmetric population distribution, not required for sign test	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Smaller P(Type II) Not 'more time taken'
5 (i) $\int_{0}^{\infty} \frac{1}{(\alpha-1)!} \alpha^{\alpha-1} \mathrm{e}^{-x} \mathrm{~d} x=1$, result follows	B1 1	
$\text { (ii) } \begin{aligned} & \mathrm{M}_{X}(t)=\int_{0}^{\infty} \frac{1}{(\alpha-1)!} x^{\alpha-1} \mathrm{e}^{-x} \mathrm{e}^{x t} \mathrm{~d} x \\ &=\int_{0}^{\infty} \frac{1}{(\alpha-1)!} x^{\alpha-1} \mathrm{e}^{-x(1-t)} \mathrm{d} x \\ & x=u /(1-t), \mathrm{d} x=\mathrm{d} u /(1-t) \text { and limits unchanged } \\ &=\int_{0}^{\infty} \frac{1}{(\alpha-1)!} \frac{u^{\alpha-1}}{(1-t)^{\alpha-1}} \frac{\mathrm{e}^{-u}}{1-t} \mathrm{~d} u \\ &=\frac{1}{(\alpha-1)!(1-t)^{\alpha}} \int_{0}^{\infty} u^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \\ &=(1-t)^{-\alpha} \quad \mathrm{AG} \end{aligned}$		Attempt to differentiate With evidence
(iii) EITHER: $\mathrm{M}^{\prime}(t)=\alpha(1-t)$ $\begin{aligned} & \mathrm{M}^{\prime \prime}(t)=\alpha(\alpha+1)(1-t)^{-\alpha-2} \\ & \text { Substitute } t=0 \\ & \mathrm{E}(X)=\alpha \\ & \operatorname{Var}(X)=\alpha(\alpha+1)-\alpha^{2} \\ & \quad=\alpha \end{aligned}$ OR $\begin{aligned} & (1-t)^{-\alpha}=1+\alpha t+1 / 2 \alpha(\alpha+1) t^{2}+\ldots \\ & \mathrm{E}(X)=\alpha \\ & \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\ & \quad=\alpha(\alpha+1)-\alpha^{2} ; \alpha \end{aligned}$	B1 B1 M1 A1 M1 A1 M1A1 B1 M1 A1A1 6	AEF M0 if t involved

6 (i) $q+p t$	B1 1	Accept $q t^{0}+p t^{1}$
(ii) $(q+p t)^{n}\left(=\mathrm{G}_{S}(t)\right)$ Binomial	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	
(iii) $\begin{aligned} \mathrm{E}(S)= & = \\ & =n p \\ & =n p(q+p) \\ & =\mathrm{G}^{\prime \prime}(1)+\mathrm{G}^{\prime}(1)-\left[\mathrm{G}^{\prime}(1)\right]^{2} \\ & =n(n-1) p^{2}(p+q)+n p-n^{2} p^{2} \\ & =n p q \end{aligned}$	M1A1 A1 M1 A1 A1 6	AEF, properly obtained
(iv) $(1 / 2+1 / 2 t)^{10} e^{-(1-t)}$ Find coefficient of t^{2} $\begin{aligned} & \left(1 / 2^{10}\right)\left(1+10 t+1 / 2 \times 10 \times 9 t^{2}\right) \\ & e^{-1}\left(1+t+1 / 2 t^{2}\right) . \end{aligned}$ Required coefficient $\begin{aligned} & =\mathrm{e}^{-1-1} 2^{-10}(1 / 2+10+45) \\ & =0.0199 \end{aligned}$	M1 M1 A1 A1 M1 A1	Seen May be implied OR: $\mathrm{P}(\mathrm{Y}=0) \mathrm{P}(\mathrm{Z}=2)+\ldots . \mathrm{M} 1$, Z is $P o(1) \mathrm{M} 1$ Ans:A1A1A1;A1 Not from $\mathrm{e}^{-(1-\mathrm{t})}=1-(1-\mathrm{t})+(1-\mathrm{t})^{2} / 2$ No more than one term missing--
7 (i) $\mathrm{E}\left(T_{1}\right)=2 \mathrm{E}(\bar{X})=2 \times \frac{1}{2} \theta=\theta$ (So T_{1} is an unbiased estimator of θ)	M1A1 2	SR: B1 if $\bar{X}=\int_{0}^{\vartheta} \frac{x}{\theta} \mathrm{~d} \theta$
$\text { (ii) } \begin{aligned} \mathrm{E}(U) & =\int_{0}^{\theta} \frac{n u^{n}}{\theta^{n}} \mathrm{~d} u ;\left[\frac{n u^{n+1}}{\theta^{n}(n+1)}\right] ; \frac{n \theta}{n+1} \\ \mathrm{E}\left(U^{2}\right) & =\int_{0}^{\theta} \frac{n u^{n+1}}{\theta^{n}} \mathrm{~d} u ; \\ \operatorname{Var}(U) & =\mathrm{E}\left(U^{2}\right)-[\mathrm{E}(U)]^{2} \\ & =\frac{n \theta^{2}}{(n+1)^{2}(n+2)} \mathrm{AG} \end{aligned}$	M1A1A1 M1A1 A1 6	
$\begin{aligned} & \text { (iii) } \operatorname{Var}\left(T_{2}\right)=\theta^{2} /[n(n+2)] \\ & \operatorname{Var}\left(T_{1}\right)=4 \operatorname{Var}(X) / n ; \theta^{2} / 3 n \\ & \operatorname{Var}\left(T_{2}\right) / \operatorname{Var}\left(T_{1}\right) \\ & 3 /(n+2) \\ & \quad<1 \text { for } n>1 \\ & \text { So } T_{2} \text { is more efficient than } T_{1} \end{aligned}$	B1 M1A1 M1 M1A1 A1 7	For comparison of var. $\mathrm{T}_{1}, \mathrm{~T}_{2}$ Idea used.

Mark Scheme 4736 June 2007

SOLUTIONS

4736
D1
June 2007
FINAL

1	(i)	Example: $N-P-Q-T-S-R-N$ or: $\quad P=Q-S-P$	$\begin{array}{ll} \hline \text { B1 } & \\ \ldots & 1 . \\ \hline \end{array}$	Any valid cycle (closed and does not repeat vertices, need not be a Hamiltonian cycle)
	(ii)	It passes through γ twice	B1 1	Or, it includes a cycle (accept 'loop')
	(iii)	5	B1 1	
	(iv)	A: neither B: semi-Eulerian	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \quad 2 \end{aligned}$	If graphs are not specified, assume \boldsymbol{A} is first
	(v)	$\begin{aligned} & A: 2 \\ & B: 1 \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	If graphs are not specified, assume A is first A: 1. $R: \Omega \Rightarrow$ Bl onlv
	(vi)	There are 4 odd nodes (N, P, S and Z) To connect these we must add 2 arcs	$\begin{array}{lr} \mathrm{Mi} & \mathbf{2} \\ \mathrm{~A} 1 & 9 \\ \hline \end{array}$	Seen or implied For 2

2	(i)	$d+f+g=120$	B1 1	For this equality. Condone an inequality
	(ii)	"(Area of) grass is not more than 4 times (area of) decking"	B1 1	Identifying the constraint in words (not just 'grass is less than or equal to 4 times decking' though)
	(iii)	$d<f$	B1 1	Do not accept $d<f$
	(iv)	$\begin{aligned} & g \geq 40 \\ & \min d=10 \\ & \min f=20 \end{aligned}$	$\begin{array}{lll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	$\begin{aligned} & \text { Do not accept } g>40 \\ & d \geq 10 \\ & f \geq 20 \end{aligned}$
	(v)	$\begin{aligned} & 5 g+10 d+20 f \\ & \text { or } g+2 d+4 f \end{aligned}$	B1 $\ldots .$	Or any positive multiple of this
	(vi)	$\begin{aligned} & \text { Minimise } g+2 d+4 f \\ & \text { Subject to } d+f+g=120 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & g-4 d+f+t=40 \\ & \text { and } \quad \\ & d \geq 10, f \geq 20, s \geq 0, t \geq 0 \end{aligned}$	$\begin{array}{ll} \text { Mi } & \\ \text { B1 } & \\ & \\ \text { A1 } & 3 \\ & 10 \\ \hline \end{array}$	For a reasonable attempt at setting up the minimisation problem using their expressions For dealing with this slack variable correctly (variables on LHS and constant on RHS) For a completely correct formulation (accept d and $f \geq 0$, or their min values for $d, f)$

3	(i)	 	M1 M1 M1 Al B1 B1 6	Bubble sort or decreasing order loses first 4 marks 1st pass correct 2nd pass correct, follow through from 1st pass 3rd pass correct, follow through from 2nd pass 4th pass correct Counting comparisons for at least three passes Counting swaps for at least three passes
	(ii)		M1 M1 M1 M1 A1 5 11	For identifying that $6 \rightarrow B$ or the sublist \{6\} For identifying that $9 \rightarrow \mathrm{C}$ or the sublist $\{9\}$ For identifying that $7 \rightarrow B$ For identifying that $5 \rightarrow B$ For the final A list or the display correct

5	(i)	Shortest path from J to $B: J G H E B$ Length of path: 125 metres	M1 M1 A1 B1 B1 B1 B1 7	ANSWERED ON INSERT For correct initial temporary labels at F, G, I For correctly updating F and label at H For all temporary labels correct (including A) (allow extra 100 at $C, 105$ at $D, 75$ at H only) For order of becoming permanent correct For all permanent labels correct (A need not have a permanent label) For correct route (condone omission of J or B) For 125
	(ii)	Odd nodes: BCEJ $\begin{array}{rlr} B C=60 & B E=35 & B J=125 \\ E J=\frac{90}{150} & C J=\frac{95}{130} & C E=\frac{70}{195} \end{array}$ Repeat $B E$ and $C J$ (or $B E, J I, I C$) $130+765$ Shortest route: 895 metres	$\begin{array}{ll} \text { B1 } \\ \text { M1 } & \\ \text { Al } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	For identifying or using $B C E J$ or implied For any three of these weights correct, or implied or f from their (i) For identifying the pairing $B E, C J$ to repeat or 130 (not ft) For $765+$ their 130 (a valid pairs total) For 895 (cao)
	(iii)	Travelling salesperson problem	B1 M1 Al B1 $\quad 16$	For graph structure correct For a reasonable attempt at are weights (at least 9 correct, including the three given) For all are weights correct For identifying TSP by name

Mark Scheme 4737 June 2007

(ii)			For $4 p-1(1-p)$ or equivalent, seen or implied For $5 p-1$ or $-1+5 p$ For any form of this expression For any form of this expression For correct structure to graph with a horizontal axis that extends from 0 to 1 , but not more than this, and with consistent scales. For line $E=5 p-1$ plotted from $(0,-1)$ to $(1,4)$ For line $E=5-7 p$ plotted from $(0,5)$ to $(1,-2)$ For line $E=4-4 p$ plotted from $(0,4)$ to $(1,0)$ In all three cases, correct or ft from (i)
	$p=0.5$	B1	For this or ft their graph
(iii)	$\begin{aligned} & 5(0.5)-1 \\ & =1.5 \text { points per game } \\ & \text { Bea may not play her best strategy } \end{aligned}$		For substituting their p into any of their equations (must be seen, cannot be implied from value) For 1.5 For this or equivalent Describing a mixed strategy that involves Z
(iv)	1.5 If Amy plays using her optimal strategy, Bea should never play strategy Z Assuming that Bea knows that Amy will make a random choice between P and Q so that each has probablility 0.5 , it does not matter how she chooses between strategies X and Y.	B1 ft M1 A1 $\begin{array}{r} 3 \\ 115 \\ \hline \end{array}$	Accept -1.5, ft from (iii) For identifying that she should not play Z For a full description of how she should play (If the candidate assumes that Bea does not know then Bea should play P with probability $\frac{7}{12}$ and Q with probability $\frac{g}{12}$).

3 (i)	A dummy is needed after C because D follows both B and C. A dummy is needed after D because F and G both follow D.	M1 AI B1 B1 4	A substantially correct network Condone arrows missing or wrong way round, no end and/or extra dummies Do NOT allow activity on node formulation A correct network, with arrows on at least the dummy activities, with no extra dummies and a single end point. A valid explanation A valid explanation
(ii)	Minimum completion time $=14$ days Critical activities are A, C, D, F	M1 Al M1 Al B1 B1 6	A substantially correct forward pass Early event times correct (ft their network if possible) A substantially correct backwards pass Late event times correct (ft their network if possible) For 14 For these four activities and no others In both cases these need to be stated, not implied from the diagram
(iii)		M1 M1 dep A1 3	For a reasonable attempt at using the number of workers for the different activities Scales and labels required and some days with 4 workers. For a reasonable attempt with no overhanging blocks For an entirely correct histogram
(iv)	E cannot happen until after C has finished so must overlap with F. Start E immediately after C but delay the start of F for 1 day (until after E has finished).	$\begin{array}{lr} \text { B1 } & \mathbf{2} \\ & \mathbf{1 5} \\ \hline \end{array}$	Earliest finish for $E>$ latest start for F For delaying the start of F (by 1 day)

5 (i)	$S-E-I-T$	B1 1	ANSWERED ON INSERT For this route (not in reverse)
(ii)	6 litres per second From A to G		For 6 For direction $A G$
(iii)	$6+2+4+0+8$	$\begin{aligned} & \mathrm{Mi} \\ & \mathrm{M} 1 \end{aligned}$	For a substantially correct attempt with $D F=0$ For dealing with $E I(=8$ or $=2+6)$
	$=20$ litres per second	A1 3	For 20 Method marks may be implied from answer
(iv)	eg flow 5 along $S-A-G-T$ and 2 along $S-C-F-H-G-T$	$\begin{array}{ll} \mathrm{Mi} & \\ \text { A1 } & 2 \end{array}$	For describing a valid flow augmenting route For correctly flowing 7 from S to T
	Diagram correctly augmented	M1 M1 A1 3	For a reasonable attempt at augmenting a flow For correctly augmenting a flow For a correct augmentation by a total of 7
		B1	For identifying cut or arcs $G T$ and $I T$
	This cut has a value of 13 and the flow already found is $6+7$ - 13 litres per second. Or	B1	For explaining how this shows that the flow is a maximum, but NOT just stating max flow $=$ min cut
	This is the maximum flow since the arcs $G T$ and $I T$ are both saturated, so no more can flow into T.	22	

Advanced GCE Mathematics (3892-2, 7890-2)
June 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	a	b	c	d	e	u
4721	Raw	72	60	52	44	36	29	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	60	53	46	39	33	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	44	37	30	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	43	36	29	22	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	42	36	30	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0

$\mathbf{4 7 3 4}$	Raw	72	56	49	42	36	30	0
	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 3 5}$	Raw	72	60	51	43	35	27	0
	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 3 6}$	Raw	72	62	55	48	42	36	0
	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 3 7}$	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0 / 3 8 9 1 / 3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0} 7891 / \mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 9 0}$	31.2	47.9	62.0	74.4	84.9	100	13873
$\mathbf{3 8 9 1}$	20.0	20.0	20.0	20.0	20.0	100	10
$\mathbf{3 8 9 2}$	58.5	75.6	87.9	94.7	97.5	100	1384
$\mathbf{7 8 9 0}$	45.3	66.9	82.2	92.4	97.7	100	9663
$\mathbf{7 8 9 1}$	0	0	0	100	100	100	1
$\mathbf{7 8 9 2}$	58.2	78.1	89.1	96.0	98.8	100	1487

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre
 (General Qualifications)
 Telephone: 01223553998
 Facsimile: 01223552627
 Email: general.qualifications@ocr.org.uk
 www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

