

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2007

3890-2/7890-2/MS/R/07

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

 Telephone:
 0870 870 6622

 Facsimile:
 0870 870 6621

 E-mail:
 publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Further Pure Mathematics 3	31
4728	Mechanics 1	37
4729	Mechanics 2	43
4730	Mechanics 3	47
4731	Mechanics 4	53
4732	Probability & Statistics 1	59
4733	Probability & Statistics 2	65
4734	Probability & Statistics 3	69
4735	Probability & Statistics 4	75
4736	Decision Mathematics 1	79
4737	Decision Mathematics 2	85
*	Grade Thresholds	91

Mark Scheme 4721 June 2007

1	(4x2 + 20x + 25) - (x2 - 6x + 9) = 3x ² + 26x + 16	M1 A1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \neq 0, b \neq 0, c \neq 0)$ One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: (2x + 5 + (x - 3))(2x + 5 - (x - 3)) = $(3x + 2)(x + 8)$ = $3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
				SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(ii)		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction or scale factor ½ in x direction	B1 B1	2	
			5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5} \times \sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90} \times \sqrt{2}$	M1	_	
	$= 6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	= $15\sqrt{5}$	A1	3	сао
			5	

4 (i)	$(-4)^2 - 4 \times k \times k$	M1		
4 (1)	$(-4)^{-4} + 4k^{2}$	A1	2	Uses $b^2 - 4ac$ (involving <i>k</i>) 16 - 4k ²
(ii)	$16 - 4k^2 = 0$	M1		Attempts $b^2 = 4ac = 0$ (involving k) or
(11)	10 - 4k = 0	IVII		Attempts $b^2 - 4ac = 0$ (involving <i>k</i>) or attempts to complete square (involving
	$k^2 = 4$			k)
	<i>k</i> = 2	B1	•	
	or <i>k</i> = -2	B1	3	
F (i)	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	14	5	European featleagth of englacing in
5 (i)	Length = $20 - 2x$	M1		Expression for length of enclosure in terms of x
		A1	2	Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$ = $20x - 2x^2$			AG
	$= 20x - 2x^{2}$			
(ii)	<u>dA</u> = 20 – 4x	M1		Differentiates area expression
	dx			r
	For max, $20 - 4x = 0$,
	x = 5 only	M1		Uses $\frac{dy}{dr} = 0$
	Area = 50	A1		dx
		A1	4	
			6	
6	Let $y = (x + 2)^2$	B1		Substitute for $(x + 2)^2$ to get
	$y^2 + 5y - 6 = 0$			$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0	M1		Correct method to find roots
		A1		Both values for y correct
	y = -6 or y = 1	M1		Attempt to work out y
	$(x + 2)^2 = 1$	A1		Attempt to work out x One correct value
	x = -1	A1	6	Second correct value and no extra real
	or x = -3		6	values
7 (a)	$f(x) = x + 3x^{-1}$	M1	-	Attempt to differentiate
	$f'(x) = 1 - 3x^{-2}$	A1		First term correct
		A1		x ⁻² soi www
		A1	4	Fully correct answer
(b)	$dv = 5 - \frac{3}{2}$	M1		Use of differentiation to find gradient
	$\frac{dy}{dx} = \frac{5}{2} \mathbf{x}^{\frac{3}{2}}$	D 4		$\frac{5}{2}$ x ^c
		B1		2
		B1		$kx^{\frac{3}{2}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2}\sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	ax = 20	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.
L		L		

8 (i)	$(x + 4)^2 - 16 + 15$	B1	a = 4
- (-)	$(x + 4)^2 - 1$	M1	15 – their a ²
		A1 3	cao in required form
(ii)	(-4, -1)	B1 ft	Correct x coordinate
(")		B1 ft 2	Correct y coordinate
		M1 A1	Correct method to find roots -5, -3
			-0, -0
(iii)	$x^{2} + 8x + 15 > 0$	M1	Correct method to solve quadratic
	(x + 5)(x + 3) > 0		inequality eg +ve quadratic graph
	x < -5, x > -3	A1 4	x < -5, x > -3
			(not wrapped, strict inequalities, no
0 (i)	$(x, 0)^2$ $(0, 1)^2$ $(x, 0)$	9	
9 (i)	(x - 3)2 - 9 + y2 - k = 0 (x - 3) ² + y ² = 9 + k	B1	$(x-3)^2$ soi
	Centre (3, 0) 9 + $k = 4^2$	B1	Correct centre
		M1	Correct value for <i>k</i> (may be
	<i>k</i> = 7	A1 4	embedded)
			Alternative method using expanded
			form:
			Centre $(-g, -f)$ M1
			Centre $(3, 0)$ A1
			$4 = \sqrt{f^2 + g^2 - (-k)} \qquad M1$
			k = 7 A1
(ii)	$(3 - 3)^2 + y^2 = 16$	M1	Attempt to substitute $x = 3$ into
	$y^2 = 16$		original equation or their equation
	y = 4	A1	$y = 4$ (do not allow ± 4)
	Length of AD = $\sqrt{(1-2)^2} \cdot (0-4)^2$		Correct method to find line length
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$
	$= 4\sqrt{2}$		
	$= 4\sqrt{2}$	A1 5	сао
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
()	T		
	y - 0 = m(x + 1) or $y - 4 = m(x - 3)$	M1	Attempts equation of straight line through their A or B with their gradient
		A1 3	Correct equation in any form with
	y = x + 1		simplified constants
		12	

10 (i)	(3x + 1)(x - 5) = 0 x = $\frac{-1}{3}$ or x = 5	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
(ii)		B1	SR B1 for x = 5 spotted www Positive quadratic (must be reasonably
		B1	symmetrical) y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 x = 3	M1* A1	Equating their gradient expression to 4
	On curve, when x = 3, y = -20	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3x^2 - 14x - 5 = 4x + c$		
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	(-18) ² – (4 x 3 x (-5 –c)) = 0	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32

Mark Scheme 4722 June 2007

-			
1	(i) $u_2 = 12$ $u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	B1 B1√ 2	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
	(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$ = 74.1	M1 A1 A1 3	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19 Obtain correct unsimplified expression Obtain 74.1 or better
	OR	M1	List all 20 terms of GP
		A2	Obtain 74.1
2	$\left(x + \frac{2}{x}\right)^4 = x^4 + 4x^3\left(\frac{2}{x}\right) + 6x^2\left(\frac{2}{x}\right)^2 + 4x\left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$	M1*	Attempt expansion, using powers of x and $^{2}/_{x}$ (or the two terms in their bracket), to get at least 4 terms
	$= x^{4} + 8x^{2} + 24 + \frac{32}{r^{2}} + \frac{16}{r^{4}}$ (or equiv)	M1* A1dep* A1 A1 5	terms Use binomial coefficients of 1, 4, 6, 4, 1 Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
	x ² x ² OR	M1* M1*	Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg x^3 . x^{-1})
		A1dep* A1 A1 5	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
3	$\log 3^{(2x+1)} = \log 5^{200}$	M1	Introduce logarithms throughout
0	$(2x+1)\log 3 = 200\log 5$	M1	Drop power on at least one side
	(24 + 1)1055 - 2001055	A1	Obtain correct linear equation (now containing no powers)
	$2x + 1 = \frac{200 \log 5}{\log 3}$	M1	Attempt solution of linear equation
_	x = 146	A1 5	Obtain $x = 146$, or better
OR	$(2x + 1) = \log_3 5^{200}$ 2x + 1 = 200log_35	M1 M1 A1 M1 A1 5	Intoduce \log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
4	(i) $\operatorname{area} \approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$	M1 M1 A1	Attempt <i>y</i> -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
	≈ 0.25×23.766		-
	≈ 5.94	A1 4	Obtain 5.94 or better (answer only is 0/4)
	(ii) This is an underestimateas the tops of the trapezia are below the curve	*B1 B1dep*B1 2	State underestimate Correct statement or sketch
		1	
		6	

5 (i)	$3(1 - \sin^2 \theta) = \sin \theta + 1$	M1		Use $\cos^2 \theta = 1 - \sin^2 \theta$
	$3-3\sin^2\theta = \sin\theta + 1$ $3\sin^2\theta + \sin\theta - 2 = 0$	A1	2	Show given equation correctly
(ii)	$(3\sin\theta - 2)(\sin\theta + 1) = 0$	M1	-	Attempt to solve quadratic equation in $\sin \theta$
	$\sin\theta = \frac{2}{3}$ or -1	A1		Both values of $\sin\theta$ correct
	$\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1		Correct answer of 270°
		A1		Correct answer of 42°
		A1√	5	For correct non-principal value answer, following
				their first value of θ in the required range (any extra values for θ in required range is max
				4/5)
				(radians is max 4/5)
				SR: answer only (or no supporting method) is B1
			7	for 42° , $B1$ for 138° , $B1$ for 270°
6 (a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
0 (a)	(1) $\int x - 4x - \frac{1}{4}x - 2x + c$	A1		Obtain $\frac{1}{4}x^4 - 2x^2$ (A0 if \int or dx still present)
		B1	3	+ c (mark can be given in (b) if not gained here)
	(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_{1}^{6}$	M1		Use limits correctly in integration attempt (ie F(6)
				- F(1))
	$=(324-72)-(\frac{1}{4}-2)$			
	= 253¾	A1	2	Obtain 253 ³ / ₄ (answer only is M0A0)
(b)	$\int 6x^{-3} dx = -3x^{-2} + c$	B1		Use of $\frac{1}{x^3} = x^{-3}$
		M1		Obtain integral of the form kx^{-2}
		A1	3	Obtain correct $-3x^{-2}$ (+ c) (A0 if \int or dx still present, but only penalise once
				in question)
			8	. ,
7 (a)	$S_{70} = \frac{70}{2} \left\{ \left(2 \times 12 \right) + \left(70 - 1 \right) d \right\}$	M1		Attempt S ₇₀
	25(24 + C0 h 12015	A1		Obtain correct unsimplified expression
	35(24+69d) = 12915	M1		Equate attempt at S_{70} to 12915, and attempt to find d
OR	<i>d</i> = 5	A1	4	Obtain $d = 5$
on	$\frac{70}{2}$ {12 + <i>l</i> } = 12915	M1		Attempt to find <i>d</i> by first equating $n/2(a + l)$ to
	1 0.55			12915
	l = 357 12 + 69d = 357	A1 M1		Obtain $l = 357$ Equate u_{70} to l
	d=5	A1		Obtain $d = 5$
(b)	ar = -4	B1		Correct statement for second term
. ,	$\frac{a}{1-r} = 9$	B1		Correct statement for sum to infinity
	$\frac{-4}{r} = 9 - 9r$ or $a = 9 - (9 \times \frac{-4}{a})$	M1		Attempt to eliminate either a or r
	$9r^2 - 9r - 4 = 0 \qquad a^2 - 9a - 36 = 0$	A1		Obtain correct equation (no algebraic
	(3r-4)(3r+1) = 0 $(a+3)(a-12) = 0$	M1		denominators/brackets) Attempt solution of three term quadratic equation
	(3r-4)(3r+1)=0 $(a+3)(a-12)=0r = \frac{4}{3}, r = -\frac{1}{3} a = -3, a = 12$	Al		Obtain at least $r = -\frac{1}{3}$ (from correct working only)
Her	$r = -\frac{1}{3}$	A1	7	Obtain $r = -\frac{1}{3}$ only (from correct working only)
	5			SR: answer only / T&I is B2 only
			11	

8	(i)	$\frac{1}{2} \times 1$	$4B^2 \times 0.9 = 16.2$	M1	Use $\left(\frac{1}{2}\right)r^2\theta = 16.2$
			$AB^2 = 36 \Longrightarrow AB = 6$	A1 2 16.2)	Confirm $AB = 6$ cm (or verify $\frac{1}{2} \ge 6^2 \ge 0.9 =$
	(ii)	$\frac{1}{2}$ × 6	$6 \times AC \times \sin 0.9 = 32.4$	M1*	Use $\Delta = \frac{1}{2}bc \sin A$, or equiv
		AC	= 13.8 cm	M1dep* A1 3	Equate attempt at area to 32.4 Obtain $AC = 13.8$ cm, or better
	(iii)		$e^{2} = 6^{2} + 13.8^{2} - 2 \times 6 \times 13.8 \times \cos 0.9$	M1 A1√	Attempt use of correct cosine formula in $\triangle ABC$ Correct unsimplified equation, from their AC
		Hen	$\operatorname{ce} BC = 11.1 \mathrm{cm}$	A1	Obtain $BC = 11.1$ cm, or anything that rounds to this
			$= 6 \times 0.9 = 5.4 \text{ cm}$ ce perimeter = 11.1 + 5.4 + (13.8 - 6) = 24.3 cm	B1 M1 A1 6	State $BD = 5.4$ cm (seen anywhere in question) Attempt perimeter of region BCD Obtain 24.3 cm, or anything that rounds to this
0	(*)			<u>11</u>	
9	(1)	(a)	f(-1) = -1 + 6 - 1 - 4 = 0	B1 1	Confirm $f(-1) = 0$, through any method
		(b)	x = -1 f(x) = (x + 1)(x ² + 5x - 4)	B1 M1	State $x = -1$ at any point Attempt complete division by $(x + 1)$, or equiv
			1(x) - (x + 1)(x + 5x - 4)	A1	Obtain $x^2 + 5x + k$
			5 . 25-16	A1	Obtain completely correct quotient
			$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1	Attempt use of quadratic formula, or equiv, find
			$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1 6	roots Obtain $\frac{1}{2} \left(-5 \pm \sqrt{41} \right)$
	(ii)	(a)	$\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1	State or imply that $2\log (x + 3) = \log (x + 3)^2$
				M1	Add or subtract two, or more, of their algebraic logs correctly
			$\log_2\left(\frac{(x+3)^2 x}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with
					single term on each side)
			$\frac{(x+3)^2 x}{4x+2} = 2$	B1	Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
			(x2 + 6x + 9)x = 8x + 4 x ³ + 6x ² + x - 4 = 0	A1 5	Confirm given equation correctly
		(b)	x > 0, otherwise log ₂ x is undefined $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1* B1√dep*	State or imply that log x only defined for $x > 0$ State $x = \frac{1}{2} \left(-5 + \sqrt{41}\right)$ (or $x = 0.7$) only, following
			$x = \frac{1}{2} \left(-3 + \sqrt{-1} \right)$	2	their single positive root in (i)(b)
				14	C r ···· (70)

Mark Scheme 4723 June 2007

1 (i)	Attempt use of product rule	M1		· ·
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1	1	2 or equiv
	[<u>Or</u> : (following complete expansion and differential Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$		m t	
(••)		B2		allow B1 if one term incorrect]
(ii)	Obtain derivative of form $kx^3(3x^4 + 1)^n$	M1		any constants k and n
	Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$	M1		
	Obtain correct $6x^{3}(3x^{4}+1)^{-\frac{1}{2}}$	A1		3 or (unsimplified) equiv
2	Identify critical value $x = 2$	B1		
	Attempt process for determining both			
	critical values	M1		
	Obtain $\frac{1}{3}$ and 2	A1		
	Attempt process for solving inequality	M1		table, sketch;
	Obtain $\frac{1}{3} < x < 2$	A1	5	implied by plausible answer
3 (i)	Attempt correct process for composition	M1		numerical or algebraic
U (1)	Obtain (16 and hence) 7	A1	2	numerical of algeorate
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far
	Obtain $(x-3)^2$	A1	2	or equiv; in terms of x , not y
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv
	Substitute limits in expression of form $(2x+1)^n$			
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A1	4	
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
	Identify k as $\frac{1}{3} \times 6.5$	A1		
	Obtain 29.6	A1	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)			
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} +$	3)		
	and hence 29.9	B1		or greater accuracy (29.897)]

Mark Scheme

5 (i)	State e	-0.04t = 0.5	B1		or equiv
	Attemp	t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe
	Obtain	17	A 1	2	implied
	Obtain	17	A1	3	or greater accuracy (17.328)
(ii)	Differe	ntiate to obtain form $k e^{-0.04t}$	*M1	[constant k different from 240
	Obtain	$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv
		attempt at first derivative to (\pm) 2.1 and solution	M1		dep *M; method maybe implied
	Obtain		A1	4	
<u> </u>					
6 (i)	Obtain	integral of form $k_1 e^{2x} + k_2 x^2$	M1		any non-zero constants k_1, k_2
		correct $3e^{2x} + \frac{1}{2}x^2$	A1		· · · 2
		$3e^{2a} + \frac{1}{2}a^2 - 3$	A1		
		definite integral to 42 and attempt			
	rearra	ngement	M1		using sound processes
	Confirm	n $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$	A1	5	AG; necessary detail required
(ii)	Obtain	correct first iterate 1.348	B1		
(11)	Attemp	t correct process to find at least			
	2 iterate	es at least 3 correct iterates	M1 A1		
	Obtain		A1 A1	4	answer required to exactly 3 d.p.;
		F1 1 24044 1 242	00 1	2.42	allow recovery after error
		$[1 \rightarrow 1.34844 \rightarrow 1.343]$	$82 \rightarrow 1$.343	389]
7 (1)	Charry	amost concerned share (alternation all and			
7 (i)		orrect general shape (alternating above ow <i>x</i> -axis)	M1		with no branch reaching <i>x</i> -axis
	Draw (1	nore or less) correct sketch	A1	2	with at least one of 1 and -1
					indicated or clearly implied
(ii)	Attemp	t solution of $\cos x = \frac{1}{3}$	M1		maybe implied; or equiv
	Obtain	1.23 or 0.392π	A1		or greater accuracy
	Obtain	5.05 or 1.61π	A1	3	or greater accuracy and no others within $0 \le x \le 2\pi$; penalise
					answer(s) to 2sf only once
(:::)	E:41	Obtain equation of forms $t = 0 - 1$ M			
(iii)	Either:	Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$	any A1	con	stant k; maybe implied
		Obtain two values only of form			
		$\theta, \ \theta + \pi$	M1		within $0 \le x \le 2\pi$; allow degrees
		Obtain 1.37 and 4.51 (or 0.437π			at this stage
		and 1.44π)	A1	4	allow ± 1 in third sig fig; or greater
	<u>Or</u> :	(for methods which involve squaring,etc.))		accuracy
	<u>01</u> .	Attempt to obtain eqn in one trig ratio	, M1		
		Obtain correct value	A1		$\tan^2\theta = 25, \cos^2\theta = \frac{1}{26}, \dots$
		Attempt solution at least to find one			
		value in first quadrant and one value in third	M1		
		Obtain 1.37 and 4.51	1411		
		Obtain 1.57 and 4.51			
		(or equivs as above)	A1		ignoring values in second and fourth quadrants

4723

8 (i)	Attempt use of quotient rule	M1		allow for numerator 'wrong way round'; or equiv
	Obtain $\frac{(4\ln x + 3)\frac{4}{x} - (4\ln x - 3)\frac{4}{x}}{(4\ln x + 3)^2}$	A1		or equiv
	Confirm $\frac{24}{x(4\ln x + 3)^2}$	A1	3	AG; necessary detail required
(ii)	Identify $\ln x = \frac{3}{4}$	B1		or equiv
	State or imply $x = e^{\frac{3}{4}}$	B1		
	Substitute e^k completely in expression for			
	derivative	M1		and deal with $\ln e^k$ term
	Obtain $\frac{2}{3}e^{-\frac{3}{4}}$	A1	4	or exact (single term) equiv
(iii)	State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} dx$	B1		
	Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$			
	or $k(4\ln x + 3)^{-1}$	*M1		any constant k
	Substitute both limits and subtract right way			
	round	M1	4	dep *M
	Obtain $\frac{4}{21}\pi$	A1	4	or exact equiv
9 (i)	Attempt use of either of $tan(A \pm B)$ identities	M1		
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$	B1		
	Obtain $\frac{\tan\theta + \sqrt{3}}{1 - \sqrt{3}\tan\theta} \times \frac{\tan\theta - \sqrt{3}}{1 + \sqrt{3}\tan\theta}$	A1		or equiv (perhaps with tan 60 $^\circ$
				still involved)
	$\tan^2 \theta - 3$			
	Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$	A1	4	AG
(ii)			4	AG
(ii)	Use $\sec^2 \theta = 1 + \tan^2 \theta$	A1 B1	4	AG
(ii)			4	AG or equiv involving $\sec \theta$
(ii)	Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of	B1	4	
(ii)	Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2	B1 M1 A1 A1		or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy
(ii)	Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$	B1 M1 A1 A1		or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$
(ii) (iii)	Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2 Obtain 142.8	B1 M1 A1 A1 A1		or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy or greater accuracy; and no others
	Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2	B1 M1 A1 A1 A1		or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy or greater accuracy; and no others

Obtain
$$\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$$

Observe that RHS is positive for all *k*, giving one value in each quadrant

A1 3 or convincing equiv

A1

Mark Scheme 4724 June 2007

4724	Mark Sche	June 2007	
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1	s.o.i. in answer
	A = 1 and $B = 2(ii) -A(x+2)^{-2} - B(x-3)^{-2} f.t.$	A1 2 √A1	for both
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1 3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks. 5
2	Use parts with $u = x^2$, $dv = e^x$	*M1	obtaining a result $f(x) + 7 - \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1	
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$ Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	M1 A1 dep*M1 A1 6	s.o.i. eg $e + (-2x + 2)e^x$ Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1 6
3	Volume = $(k) \int_{0}^{n} \sin^2 x (dx)$	B1	where $k = \pi , 2\pi$ or 1; limits necessary
	⁰ Suitable method for integrating $\sin^2 x$	*M1	eg $\int + /-1 + /-\cos 2x (dx)$ or single integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x \left(\mathrm{d}x \right) = \frac{1}{2} \int 1 - \cos 2x \left(\mathrm{d}x \right)$	A1	or $-\sin x \cos x + \int \cos^2 x(dx)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (\mathrm{d}x)$
	Use limits correctly Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	dep*M1 A1 6	<u>Beware</u> : wrong working leading to $\frac{1}{2}\pi^2$
4	(i) $\frac{\left(1+\frac{x}{2}\right)^{-2}}{=1+\left(-2\right)\left(\frac{x}{2}\right)+\frac{-23}{2}\left(\frac{x}{2}\right)^{2}+\frac{-234}{3!}\left(\frac{x}{2}\right)^{3}}$	M1	Clear indication of method of ≥ 3 terms
	= 1 - x	B1	First two terms, not dependent on M1
	$+ \frac{3}{4} X^{2} - \frac{1}{2} X^{3}$	A1	For both third and fourth terms $1 1 3 2 1 3$
	$(2+x)^{-2} = \frac{1}{4} (\text{their exp of } (1+ax)^{-2}) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ \mathbf{x} < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2}x\right < 1)$	B1 5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$ $-\frac{3}{8}(x^3)$	M1 √A1 2	Follow-through from $b + d$
	8 (* /	_	7

Mark Scheme

_

5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	
	$= \frac{-4\sin 2t}{-\sin t}$	A1	Accept $\frac{4 \sin 2t}{\sin t}$ WWW
	$= 8 \cos t$	A1	
	≤ 8 AG (ii) Use $\cos 2t = 2\cos^2 t + /-1$ or $1 - 2\cos^2 t$		with brief explanation eg COS $t \le 1$ <u>If starting with</u> $y = 4x^2 + 1$, then
	(ii) Use $\cos 2t = 2\cos t + 7 - 1 \text{ of } 1 - 2\cos t$ Use correct version $\cos 2t = 2\cos^2 t - 1$	M1	
		A1	Subst $x = \cos t$, $y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG (iii) U-shaped parabola abve <i>x</i> -axis, sym abt <i>y</i> -axis Portion between $(-1, 5)$ and $(1, 5)$	A1 3 B1 B1 2	<u>Either</u> substitute <u>a</u> formula for cos 2t M1 Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 <u>Or</u> Manip to give formula for cos 2t M1 Obtain corr formula & say it's correct A1 Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked
	N.B. If (ii) answered or quoted before (i) attempted,		(i) B2 for $\frac{dy}{dx} = 8x$ +B1,B1 if earned. 9
			··· ut
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1	
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2 + 3xy + 4y^2\right) = 2x + 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y + 8y\frac{\mathrm{d}y}{\mathrm{d}x}$	A1	
	Solve for $\frac{dy}{dx}$ & subst (x, y) = (2,3)	M1	or v.v. Subst now or at normal eqn stage;
	ů.		(M1 dep on either/both B1 M1 earned)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1	Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1	This f.t. mark awarded only if numerical
	Find equ any line thro (2,3) with any num grac 30x - 13y - 21 = 0 AEF	M1 A1 8	No fractions in final answer 8
7	(i) Leading term in quotient = $2x$	B1	
7	Suff evidence of division or identity process	M1	
	Quotient = $2x + 3$	A1	Stated or in relevant position in division
	Remainder = x	A1 4	Accept $\frac{x}{x^2+4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1 1	$2x+3+\frac{x}{x^2+4}$
	(iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1	
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$	M1	Ignore any integration of $\frac{D}{x^2 + 4}$
	$k = \frac{1}{2}C$	√A1	
	Limits used correctly throughout	M1	
	$14 + \frac{1}{2} \ln \frac{13}{5}$	A1 5	logs need not be combined.
			10

_

8	(i) Sep variables eg $\int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1		s.o.i. Or $\frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1		& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1		
	Subst $t = 0, h = 1$ into equation containing 'c'	dep*M1		
	Correct value of their c = $-(20)\ln 5$ WWW	A1		or (20) In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1	6	Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1	1	Accept 4.5, $4\frac{1}{2}$
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$	M1		or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage
	<i>h</i> = 2.97(2.9673467)	A1	2	$6-5e^{-0.5}$ or $6-e^{1.109}$
	[In (ii),(iii) accept non-decimal (exact) answers Accept truncated values in (ii),(iii).	but –1 o	nc	e.]
	(iv) Any indication of (approximately) 6 (m)	B1	1	10
9	(i) Use $-6i + 8j - 2k$ and $i + 3j + 2k$ only	M1		
	Correct method for scalar product	M1		of any two vectors $(-6+24-4=14)$
	Correct method for magnitude	M1		of <u>any</u> vector $(\sqrt{36+64+4} = \sqrt{104})$ or
	-			of <u>any</u> vector $(\sqrt{36} + 64 + 4) = \sqrt{104}$ or $\sqrt{1+9+4} = \sqrt{14}$)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad	A1	4 5i -	$\sqrt{1+9+4} = \sqrt{14}$)
	-	A1	4 5i -	$\sqrt{1+9+4} = \sqrt{14}$)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad	A1	4 5i -	$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel	A1 erated by s M1		$\sqrt{1+9+4} = \sqrt{14}$) - j -2k and 3i - 8j] - 6i + 8j - 2k & 3i + cj + k with some indic of method of attack eg - 6i + 8j - 2k = λ (3i + cj + k)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene	A1 erated by	4 5i 2	$\sqrt{1+9+4} = \sqrt{14}$) - j -2k and 3i - 8j] - 6i + 8j - 2k & 3i + cj + k with some indic of method of attack eg - 6i + 8j - 2k = λ (3i + cj + k)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel	A1 erated by s M1		$\sqrt{1+9+4} = \sqrt{14}$) - j -2k and 3i - 8j] - 6i + 8j - 2k & 3i + cj + k with some indic of method of attack eg - 6i + 8j - 2k = λ (3i + cj + k)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c'	A1 erated by a M1 A1		$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, u = 1	A1 Frated by M1 A1 M1 M1 A1		$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, u = 1 Subst their (<i>t</i> , <i>u</i>) into equation containing c	A1 Frated by M1 A1 M1 A1 A1 M1	2	$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, $u = 1Subst their (t,u) into equation containing cc = -3$	A1 Frated by M1 A1 M1 M1 A1		$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, u = 1 Subst their (<i>t</i> , <i>u</i>) into equation containing c	A1 Frated by M1 A1 M1 A1 A1 M1	2	$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been gene (ii) Indication that relevant vectors are parallel c = -4 (iii) Produce 2/3 equations containing <i>t</i> , <i>u</i> (& c) Solve the 2 equations not containing 'c' t = 2, $u = 1Subst their (t, u) into equation containing cc = -3Alternative method for final 4 marks$	A1 mated by M1 A1 M1 A1 A1 M1 A1 A1	2	$\sqrt{1+9+4} = \sqrt{14}$) - j -2 k and 3 i - 8 j] - 6 i + 8 j - 2 k & 3 i + c j + k with some indic of method of attack eg - 6 i + 8 j - 2 k = λ (3 i + c j + k) c = -4 WW \rightarrow B2 eg 3 + t = 2 + 3u, -8 + 3t = 1 + cu

Mark Scheme 4725 June 2007

1	EITHER	M1		Use trig to find an expression for <i>a</i> (or <i>b</i>)
	a = 2	A1		Obtain correct answer
		M1		Attempt to find other value
		A1		Obtain correct answer a.e.f.
	$b=2\sqrt{3},$	M1		(Allow 3.46)
	OR	M1		State 2 equations for <i>a</i> and <i>b</i>
		A1 A1	4	1
				Attempt to solve these equations
	$a=2$ $b=2\sqrt{3}$			Obtain correct answers a.e.f.
	$u = 2$ $v = 2\sqrt{3}$		4	SR \pm scores A1 only
			-	~~~
2	. 1	B1		Show result true for $n = 1$
-	$(1^3 =)\frac{1}{4} \times 1^2 \times 2^2$	21		
	4	M1		Add next term to given sum formula
	1 2 2 3	M1(indep)		Attempt to factorise and simplify
	$\frac{1}{n}n^{2}(n+1)^{2}+(n+1)^{3}$	A1		Correct expression obtained convincingly
	$\frac{1}{4}n^2(n+1)^2 + (n+1)^3$	Al	5	Correct expression obtained convincingly
		ΠΙ	5	
	$\frac{1}{4}(n+1)^2(n+2)^2$			Specific statement of induction conclusion
	4			
			5	
3	$2\Sigma^{2}$ 25 + 5.1	M1	0	Consider the sum of three separate terms
5	$3\Sigma r^2 - 3\Sigma r + \Sigma 1$	1411		consider the sum of three separate terms
				Correct formula stated
	$2\Sigma_{1}^{2} = \frac{1}{2} \pi (n + 1)(2n + 1)$	A1		Concer formula suice
	$3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$	211		
	2			
	$3\Sigma r = \frac{3}{2}n(n+1)$	A1		Correct formula stated
	2	AI		Concer formula stated
		A1		Correct term seen
	5 1	M1		Attempt to simplify
	$\sum_{n} 1 = n$	Al	6	
	n	AI	0	Obtain given answer correctly
			6	
4		B1	U	Transpose leading diagonal and negate other
-				diagonal or solve sim. eqns. to get 1 st column
	(i) $\frac{1}{2} \begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1	2	Divide by the determinant or solve 2^{nd} pair to
	$(-3 \ 1)$	DI	2	get 2^{nd} column
	````			
	(ii)	M1		Attempt to use B ⁻¹ A ⁻¹ or find B
		M1		
	(2 0)	M1(index)	А	Attempt at matrix multiplication
	$\frac{1}{2}$ $\begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$	M1(indep)	4	One element correct, a.e.f,
	(23 - 5)	A 1 G	6	All elements correct, a.e.f.
		Alft		NB ft consistent with their (i)
		A 1 G		
		A1ft		

				1
5	(i) $\frac{1}{r(r+1)}$	B1	1	Show correct process to obtain given result
	(ii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$	M1 M1 A1 B1ft M1	3	Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter
	$\frac{1}{n+1}$	A1 c.a.o.	3 7	State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii) Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)^{2}$ = 9 - 4 = 5 (ii) (a) $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ $2u^{3} + 6u^{2} - 9u + 3 = 0$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$ (c) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	<ul> <li>M1</li> <li>A1 ft</li> <li>M1</li> <li>A1</li> <li>M1</li> <li>A1</li> <li>A1</li> <li>M1</li> <li>A1 ft</li> </ul>	2 2 2 <b>8</b>	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer Required expression is related to new cubic stated or implied -(their "b" / their "a")

			1	i
7	(i)	M1		Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a - 12) + 32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	det $\mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) <i>EITHER</i>	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
		A1	3	
		M1		det $M = 0$ so non-unique solutions
		A1		×
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	<i>y</i> -axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		č
	through $(1, 0)$ with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above <i>x</i> -axis	-	2	SR: B1ft for any 2 correct features
			8	

9	(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$	B1	1	Correct matrix
	<ul> <li>(ii) Rotation (centre <i>O</i>), 45⁰, clockwise</li> <li>(iii)</li> </ul>	B1B1B1	3	Sensible alternatives OK, must be a single transformation
		B1	1	Matrix multiplication or combination of transformations
	(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$	M1 A1	2	For at least two correct images For correct diagram
	(v) det $\mathbf{C} = 2$	B1		State correct value
	area of square has been doubled	B1	2	State correct relation a.e.f.
			9	
10	(i) $x^2 - y^2 = 16$ and $xy = 15$	M1		Attempt to equate real and imaginary parts of $(x + iy)^2$ and 16+30i
		A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in $x^2$ or $y^2$
	$\pm (5 + 3i)$	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 3$
	(ii) $z = 1 \pm \sqrt{16 + 30i}$	A1	6	Obtain correct answers as complex numbers
		M1*		Use quadratic formula or complete the square
	6 + 3i, -4 - 3i	A1 *M1dep A1 A1ft	5	Simplify to this stage Use answers from (i) Obtain correct answers
			11	

### Mark Scheme 4726 June 2007

- 1 Correct formula with correct *r* Rewrite as  $a + b\cos 6\theta$ Integrate their expression correctly Get  $\frac{1}{3}\pi$
- 2 (i) Expand to  $\sin 2x \cos^{1}/4\pi + \cos 2x \sin^{1}/4\pi$ Clearly replace  $\cos^{1}/4\pi$ ,  $\sin^{1}/4\pi$  to A.G.
  - (ii) Attempt to expand  $\cos 2x$ Attempt to expand  $\sin 2x$ Get  $\frac{1}{2}\sqrt{2}$  (1 + 2x - 2x² - 4x³/3)
- M1 Allow  $r^2 = 2 \sin^2 3\theta$ M1  $a, b \neq 0$ A1 $\sqrt{1}$  From  $a + b\cos 6\theta$ A1 cao
- _ .
- B1 B1
- M1 Allow  $1 2x^2/2$
- M1 Allow  $2x 2x^3/3$
- A1 Four correct unsimplified terms in any order; allow bracket; AEEF SR Reasonable attempt at  $f^n(0)$  for n=0 to 3 M1 Attempt to replace their values in Maclaurin M1 Get correct answer only A1
- M1 Allow C=0 here
- $M1\sqrt{May}$  imply above line; on their P.F.
- M1 Must lead to at least 3 coeff.; allow cover-up method for *A*
- A1 cao from correct method
- B1 $\sqrt{}$  On their A
- B1 $\sqrt{}$  On their *C*; condone no constant; ignore any  $B \neq 0$
- M1 Two terms seen
- M1 Allow +
- A1
- A1 cao
- B1 On any  $k\sqrt{1-x^2}$
- M1 In any reasonable integral
- A1
- SRReasonable sub.B1Replace for new variable and attempt<br/>to integrate (ignore<br/>limits)M1Clearly get  $\frac{1}{2}\pi$ A1

3 (i) Express as  $A/(x-1) + (Bx+C)/(x^2+9)$ Equate  $(x^2+9x)$  to  $A(x^2+9) + (Bx+C)(x-1)$ Sub. for x or equate coeff.

Get A=1, B=0,C=9

- (ii) Get  $A \ln(x-1)$ Get  $C/3 \tan^{-1}(x/3)$
- 4 (i) Reasonable attempt at product rule Derive or quote diff. of  $\cos^{-1}x$ Get  $-x^2(1 - x^2)^{-\frac{1}{2}} + (1 - x^2)^{\frac{1}{2}} + (1 - x^2)^{-\frac{1}{2}}$ Tidy to  $2(1 - x^2)^{\frac{1}{2}}$ 
  - (ii) Write down integral from (i) Use limits correctly Tidy to  $\frac{1}{2}\pi$

5

(i)	Attempt at parts on $\int 1 (\ln x)^n dx$
	Get x $(\ln x)^n - \int^n (\ln x)^{n-1} dx$
	Put in limits correctly in line above
	Clearly get A.G.

- (ii) Attempt  $I_3$  to  $I_2$  as  $I_3 = e 3I_2$ Continue sequence in terms of In Attempt  $I_0$  or  $I_1$ Get 6 - 2e
- 6 (i) Area under graph  $(= \int 1/x^2 dx, 1 \text{ to } n+1)$ < Sum of rectangles (from 1 to n)

Area of each rectangle = Width x Height =  $1 \times 1/x^2$ 

- (ii) Indication of new set of rectangles Similarly, area under graph from 1 to n
  > sum of areas of rectangles from 2 to n Clear explanation of A.G.
- (iii) Show complete integrations of RHS, using correct, different limits
  Correct answer, using limits, to one integral
  Add 1 to their second integral to get complete series
  Clearly arrive at A.G.
- (iv) Get one limit Get both 1 and 2

- M1 Two terms seen
- A1 M1

A1  $\ln e = 1$ ,  $\ln 1 = 0$  seen or implied

M1

A1  $I_2 = e - 2I_1$  and/or  $I_1 = e - I_0$ 

- M1  $(I_0 = e-1, I_1 = 1)$
- A1 cao
- B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)
- B1 Some evidence of area worked out seen or implied
- B1

A1

M1

A1

B1

**B**1

Quotable

- B1 Sum (total) seen or implied
- B1 Diagram; use of left-shift of previous areas
- M1 Reasonable attempt at  $\int x^{-2} dx$

Quotable; limits only required

47	26
----	----

- (i) Use correct definition of cosh or sinh x Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.
  - (ii) Get cosh(x y) = 1Get or imply (x - y) = 0 to A.G.
  - (iii) Use  $\cosh^2 x = 9$  or  $\sinh^2 x = 8$ Attempt to solve  $\cosh x = 3$  (not -3) or  $\sinh x = \pm \sqrt{8}$  (allow  $+\sqrt{8}$  or  $-\sqrt{8}$  only) Get at least one x solution correct Get both solutions correct, x and y
- B1 Seen anywhere in (i) M1 A1 $\sqrt{}$ A1 Accept  $e^{x-y}$  and  $e^{y-x}$
- M1 A1
- B1 M1  $x = \ln(3 + \sqrt{8})$  from formulae book or from basic cosh definition
- A1
- A1 x, y =  $\ln(3 \pm 2\sqrt{2})$ ; AEEF
  - SR Attempt tanh = sinh/coshB1Get tanh x =  $\pm \sqrt{8/3}$  (+ or -)M1Get at least one sol. correctA1Get both solutions correctA1
  - SR Use exponential definitionB1Get quadratic in  $e^x$  or  $e^{2x}$ M1
    - Solve for one correct x A1 Get both solutions, x and y A1
- 8 (i)  $x_2 = 0.1890$   $x_3 = 0.2087$   $x_4 = 0.2050$   $x_5 = 0.2057$   $x_6 = 0.2055$   $x_7 (= x_8) = 0.2056$  (to  $x_7$  minimum)  $\alpha = 0.2056$ 
  - (ii) Attempt to diff. f(x)Use  $\alpha$  to show  $f'(\alpha) \neq 0$
  - (iii)  $\delta_3 = -0.0037$  (allow -0.004)
  - (iv) Develop from  $\delta_{10} = f'(\alpha) \ \delta_9$  etc. to get  $\delta_i$ or quote  $\delta_{10} = \delta_3 f'(\alpha)^7$ Use their  $\delta_i$  and  $f'(\alpha)$ Get 0.00000028

- B1
- B1 $\sqrt{1}$  From their  $x_1$  (or any other correct)
- B1 $\sqrt{}$  Get at least two others correct, all to a minimum of 4 d.p.
- B1 cao; answer may be retrieved despite some errors
- M1  $k/(2+x)^3$
- A1 $\sqrt{\text{Clearly seen, or explain } k/(2+x)^3 \neq 0}$ as  $k \neq 0$ ; allow  $\pm 0.1864$
- $\begin{array}{ccc} \text{SR} & \text{Translate } y=1/x^2 & \text{M1} \\ & \text{State/show } y=1/x^2 \text{ has no TP} & \text{A1} \end{array}$
- B1 $\sqrt{\text{Allow}} \pm$ , from their x₄ and x₃
- M1 Or any  $\delta_1$  eg use  $\delta_9 = x_{10} x_9$
- M1
- A1 Or answer that rounds to  $\pm$  0.00000003

9 (i) Quote x = aAttempt to divide out

Get y = x - a

(ii) Attempt at quad. in x (=0) Use  $b^{2-} 4ac \ge 0$  for real x Get  $y^2 + 4a^2 \ge 0$ State/show their quad. is always >0

(iii)

B1

M1 Allow M1 for y=x here; allow

A1 (x-a) + k/(x-a) seen or implied

A1 Must be equations

M1

- M1 Allow >
- A1
- B1 Allow  $\geq$
- B1 $\sqrt{}$  Two asymptotes from (i) (need not be labelled)
- B1 Both crossing points

B1 $$ Approaches – correct shap	e
SR Attempt diff. by quotient/p	roduct
rule	M1
Get quadratic in x for $dy/dx = 0$	
and note $b^2 - 4ac < 0$	A1
Consider horizontal asymptotes	B1
Fully justify answer	B1

### Mark Scheme 4727 June 2007

_

<b>1</b> (i) $z z^* = r e^{i\theta} \cdot r e^{-i\theta} = r^2 =  z ^2$	B1 1	For verifying result AG
(ii) Circle	B1	For stating circle
Centre $0 (+0i) OR (0, 0) OR O$ , radius 3	B1 2	For stating correct centre and radius
	3	
2 <i>EITHER</i> : $(\mathbf{r} =) [3+t, 1+4t, -2+2t]$	M1	For parametric form of <i>l</i> seen or implied
8(3+t) - 7(1+4t) + 10(-2+2t) = 7	M1 A1	For substituting into plane equation
$\Rightarrow$ (0t) + (-3) = 7 $\Rightarrow$ contradiction	A1	For obtaining a contradiction
<i>l</i> is parallel to $\Pi$ , no intersection	B1 5	For conclusion from correct working
$OR: [1, 4, 2] \cdot [8, -7, 10] = 0$	M1	For finding scalar product of direction vectors
$\Rightarrow l$ is parallel to $\Pi$	A1	For correct conclusion
(3, 1, -2) into П	M1	For substituting point into plane equation
$\Rightarrow 24 - 7 - 20 \neq 7$	A1	For obtaining a contradiction
<i>l</i> is parallel to $\Pi$ , no intersection	B1	For conclusion from correct working
<i>OR</i> :Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x - 7y + 10z = 7$		
eg $y - 2z = 3$ , $2y - 2 = 4z + 8$	M1 A1	For eliminating one variable
	M1	For eliminating another variable
eg $4z + 4 = 4z + 8$	A1	For obtaining a contradiction
<i>l</i> is parallel to $\Pi$ , no intersection	B1	For conclusion from correct working
	5	
<b>3</b> Aux. equation $m^2 - 6m + 8 (= 0)$	M1	For auxiliary equation seen
m = 2, 4	A1	For correct roots
$CF (y =) Ae^{2x} + Be^{4x}$	A1√	For correct CF. f.t. from their <i>m</i>
PI $(y =) Ce^{3x}$	M1	For stating and substituting PI of correct form
$9C - 18C + 8C = 1 \Longrightarrow C = -1$	A1	For correct value of <i>C</i>
$GS  y = Ae^{2x} + Be^{4x} - e^{3x}$	B1√ 6	For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI
	<b>U</b>	

81		For obtaining s
		5
<b>B</b> 1 2	2	For obtaining <i>s</i>
81		For stating closure with reason
81		For stating identity <i>r</i>
<b>/</b> 1		For checking for inverses
A1 4	4	For stating inverses $OR$ For giving sufficient explanation to justify each element has an inverse eg $r$ occurs once in each row and/or column
81		For stating identity <i>r</i>
/11		For attempting to establish a generator $\neq r$
1		For showing powers of $p$ ( <i>OR</i> $q$ , $s$ or $t$ ) are different elements of the set
1		For concluding $p^5(ORq^5, s^5 \text{ or } t^5) = r$
32 Z	2	For stating all elements <b>AEF</b> eg $d^{-1}$ , $d^{-2}$ , $dd$
/11		For expanding (real part of) $(c+is)^6$ at least 4 terms and 1 evaluated binomial coefficient
		needed
1		For correct expansion
<b>/</b> 1		
/11		For using $s^2 = 1 - c^2$
A1 4	4	For correct result AG
<i>I</i> 1		For obtaining a numerical value of $\cos 6\theta$
1		For any correct solution of $\cos 6\theta = \frac{1}{2}$
<b>/</b> 1		For stating or implying at least 2 values of $\theta$
A1 4	4	For identifying $\cos \frac{1}{18} \pi$ <b>AEF</b> as the largest positive root
		from a list of 3 positive roots
		<i>OR</i> from general solution <i>OR</i> from consideration of the cosine function
	$11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 12 \\ 8 \\ 11 \\ 11$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$6  \mathbf{(i)}  \mathbf{n} = l_1 \times l_2$	B1	For stating or implying in (i) or (ii) that <b>n</b> is perpendicular to $l_1$ and $l_2$
$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	For finding vector product of direction vectors
$\mathbf{n} = k[-1, 0, 2]$	A1	For correct vector (any $k$ )
$[3, 4, -1] \cdot k[-1, 0, 2] = -5k$	M1 (*dep)	For substituting a point of $l_1$ into <b>r.n</b>
$\mathbf{r} \cdot [-1, 0, 2] = -5$	A1 5	For obtaining correct <i>p</i> . <b>AEF</b> in this form
(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$	M1	For using same <b>n</b> and substituting a point of $l_2$
$\mathbf{r} \cdot [-1, 0, 2] = -3$	A1√ <b>2</b>	For obtaining correct $p$ . <b>AEF</b> in this form f.t. on incorrect <b>n</b>
(iii) $d = \frac{ -5+3 }{\sqrt{5}} OR d = \frac{ [2,-3,2] \cdot [-1,0,2] }{\sqrt{5}}$	M1	For using a distance formula from their equations Allow omission of
<i>OR d</i> from (5, 1, 1) to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$		
<i>OR d</i> from (3, 4, -1) to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$OR[3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$		<i>OR</i> For finding intersection of $\mathbf{n}_1$ and $\Pi_2$ or $\mathbf{n}_2$ and
$OR \ [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \implies t = -\frac{2}{5}$		П
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427\dots$	A1√ <b>2</b>	For correct distance <b>AEF</b> f.t. on incorrect <b>n</b>
(iv) $d$ is the shortest $OR$ perpendicular distance between $l_1$ and $l_2$	B1 1	For correct statement
	10	
$(ai\phi + a^{-i\phi})$		
7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
$\equiv z^2 - (2\cos\phi)z + 1$		
(ii) $z = e^{\frac{2}{7}k\pi i}$	B1	For general form OR any one non-real root
	D1	For other roots specified
for $k = 0, 1, 2, 3, 4, 5, 6 OR 0, \pm 1, \pm 2, \pm 3$	B1	( <i>k</i> =0 may be seen in any form, eg 1, $e^0$ , $e^{2\pi i}$ )
		For answers in form $\cos \theta + i \sin \theta$ allow maximum
		B1 B0
	B1	For any 7 points equally spaced round unit circle (circumference need not be shown)
	B1 4	For 1 point on + ^{ve} real axis, and other points in correct quadrants
(iii) $(z^7 - 1 =) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$	M1	For using linear factors from (ii), seen or implied
$(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{2}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})(z - e^{-\frac{6}{7}\pi i})$		
$= (z - e^{\frac{2}{7}\pi i})(z - e^{-\frac{2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{-\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{-\frac{6}{7}\pi i}) \times$	M1	For identifying at least one pair of complex conjugate factors
$\times (z-1)$	B1	For linear factor seen
$=(z^2-(2\cos\frac{2}{7}\pi)z+1)\times$	A1	For any one quadratic factor seen
$(z^{2} - (2\cos\frac{4}{7}\pi)z + 1) \times (z^{2} - (2\cos\frac{6}{7}\pi)z + 1) \times (z^{2} - (2\cos\frac{6}{7}\pi)z + 1) \times (z^{2} - 1)$	A1 5	For the other 2 quadratic factors and expression written as product of 4 factors
$\times (z-1)$	10	

-

-

8 (i) Integrating factor $e^{\int \tan x  (dx)}$	B1	For correct IF		
$= e^{-\ln \cos x}$	M1	For integrating to ln form		
$= (\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF		
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left( y(\cos x)^{-1} \right) = \cos^2 x$	В1√	For $\frac{d}{dx}(y)$ . their IF = $\cos^3 x$ . their IF		
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1 M1	For integrating LHS For attempting to use $\cos 2x$ formula <i>OR</i> parts for $\int \cos^2 x  dx$		
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x \ (+c)$	A1	For correct integration both sides <b>AEF</b>		
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF		
(ii) $2 = (\frac{1}{2}\pi + c) \cdot -1 \Rightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS and solve for <i>c</i>		
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF		
/	10			
<b>9</b> (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure		
$(3^p \times 3^q) \times 3^r = (3^{p+q}) \times 3^r = 3^{p+q+r}$	M1	For considering 3 distinct elements, seen bracketed 2+1 or 1+2		
$= 3^{p} \times (3^{q+r}) = 3^{p} \times (3^{q} \times 3^{r}) \Longrightarrow \text{ associativity}$	A1	For correct justification of associativity		
Identity is 3 ⁰	B1	For stating identity. Allow 1		
Inverse is $3^{-n}$	B1	For stating inverse		
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow$ commutativity	B1 6	For showing commutativity		
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(=3^{2(n+m)}\right)$	B1*	For showing closure		
Identity, inverse OK	B1 (*dep) <b>2</b>	For stating other two properties satisfied and hence a subgroup		
<b>(b)</b> For $3^{-n}$ ,	M1	For considering inverse		
<i>−n</i> ∉ subset	A1 2	For justification of not being a subgroup		
		$3^{-n}$ must be seen here or in (i)		
(c) <i>EITHER</i> : eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure		
$\neq 3^{r^2} \Rightarrow$ not a subgroup	A1 2	For a correct counter-example and statement that it is not a subgroup		
$OR: \ 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general		
$\neq 3^{r^2}$ eg $1^2 + 2^2 = 5 \implies$ not a subgroup	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and statement that it is not a subgroup		
	12	statement that it is not a subgroup		

# Mark Scheme 4728 June 2007

1			
1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	· ·
· · · · · · · · · · · · · · · · · · ·	$\mathbf{p}^2 = \mathbf{z}^2 + 1\mathbf{a}^2$	[2]	order $\mathbf{P}^2 = \mathbf{V}^2 + \mathbf{V}^2$
(ii)	$R^2 = 5^2 + 12^2$	M1	For using $R^2 = X^2 + Y^2$
	Magnitude is 13 N	A1	Allow 13 from X=-5
	$\tan\theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	<b>SR:</b> $p=14.9$ and $Q=11.4$ giving $R=13+/-0.1$ B2,
	Aligie is 07.4		
		[4]	Angle = 67.5+/-0.5 B2
2(i)	$250 + \frac{1}{2}(290 - 250)$	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
	t = 270	A1	
		[2]	
(ii)		M1	The idea that area represents displacement
(11)	1/ 40 12 + 210 12 + 1/ 20 12		
	¹ / ₂ x40x12+210x12+ ¹ / ₂ x20x12-	M1	Correct <u>structure</u> , ie triangle1 + rectangle2 + triangle3 -
	¹ / ₂ x20x12 or ¹ / ₂ x40x12+210x12		triangle4  with triangle3 = $ triangle4 $ , triangle1 +
	or $\frac{1}{2} x(210+250) x 12 etc$		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A1	
	1	[3]	
(iii)	appropriate <u>structure</u> , ie triangle +	M1	All terms positive
(III)		1111	
	rectangle + triangle +  triangle ,		
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
3(i)		M1	An equation with R, T and 50 in linear combination.
2(1)	$R + Tsin72^\circ = 50g$	Al	R + 0.951T = 50g
	K + 15m/2 = 30g		K + 0.7511 = 50g
		[2]	
(ii)	$T = 50g/sin72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^\circ = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
	m 52.0	[4]	1000pt 02.0
(:::)	$X = T\cos 72^{\circ}$		Turn lind has a sum of
(iii)	$X = 1\cos/2$	B1	Implied by correct
		54	answer
	X = 159	B1	Or better
		[2]	
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
$\mathbf{O}$	positive sense throughout.		0
	$0.18 \ge 2 - 3m = 0$	A1	
	m = 0.12	A1	
		[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	
	$= -0.18 \times 1.5 + 1.5 m$		
	$0.18 \ge 2 - 3m = -0.18 \ge 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A1	
	111 - 0.14		
		[3]	3 marks possible if g included consistently
(1)	0.10 - 0. 2	B1ft	ft wrong momentum 'before'
(iib)	$0.18 \ge 2 - 3m$	2110	
(11b)	$0.18 \times 2 - 3m$ = (0.18 + m)1.5	Diff	
(11b)	=(0.18+m)1.5		
(11b)	= (0.18 + m)1.5 m = 0.02	B1	
(11b)	= (0.18 + m)1.5 m = 0.02 0.18 x 2 - 3m= - (0.18 + m)1.5	B1 B1ft	
(11b)	= (0.18 + m)1.5 m = 0.02	B1	0 marks if g included

5(i)	<u>.</u>	M1	Using $v^2 = u^2 + 2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{\text{max}} = 0$	A1	
	Height is 3.6m (AG)	A1 [3]	
(ii)		 M1	Using $u^2 = +/- 2g(ans(i) - 2)$
	u = 5.6	A1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using s = ut + $\frac{1}{2}$ at ² for P <i>and</i> for Q, a = +/-g, expressions for s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2} gt^2$ and		Or 8.4t $(-\frac{1}{2} \text{ gt}^2)=5.6t (-\frac{1}{2} \text{ gt}^2)+/-2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A1	Correct sign for g, $cv(5.6)$ , $+/-2$ in only one equation
	t = 5/7 (0.714)	A1	cao
		M1	Using $v = u + at$ for P and for Q, $a = +/-g$ , $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$	A1	Correct sign for g, cv(5.6), candidates answer for t (including sign)
	$v_{\rm P} = 1.4$ and $v_{\rm Q} = -1.4$	A1	cao
		[6]	
	OR (time when at same speed in		
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for $g$ , $cv(5.6)$
	$v = 1.4 $ {or $t = 5/7 (0.714)$ }	A1	Only one correct answer is needed
	(with $v = 1.4$ ) $1.4^2 = 8.4^2 - 2g_{SP}$ and	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$ , $cv(v)$
	$(-1.4)^2 = 5.6^2 - 2gs_Q$	A1	Correct sign for g, cv(5.6), candidate's answer for v (including - for Q)
	$s_P = 3.5$ and $s_Q = 1.5$ {(with t=5/7)	A1	cao
		M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = \frac{1}{-g}$ , $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2}gx0.714^{2}$ and		
	$s = 5.6x0.714 - \frac{1}{2}gx0.714^2$	A1	Correct sign for g, cv(5.6), candidate's answer for t (including sign of t if negative)
	$s_P = 3.5$ and $s_Q = 1.5$	A1	cao}
	OR (motion related to greatest height		
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and $0 = 5.6$ -gt		
	t = 6/7 and $t = 4/7$	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$		$\{\text{Or semi-interval} = 6/7 - 4/7)/2 = 1/7\}$
	$v_{\rm P} = 1.4$ and $v_{\rm Q} = -1.4$	A1	cao
	$s_P = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and $s_O = 5.6x0.714 - \frac{1}{2} gx0.714^2$	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g, cv(5.6) and $cv(t)$
	$\{s_{\rm P} = 0/7 - \frac{1}{2}(-g)x(1/7)^2$ and		$\{s = vt - \frac{1}{2} at^2 \text{ for } P and s = ut + \frac{1}{2} at^2 \text{ for } Q\}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	
	$s_{P} = 3.5 \ s_{Q} = 1.5$	Λ 1	000
	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	A1	cao
			continued

5(iii)	OR (without finding exactly where or		
5(III)	when)	M1	Using $v^2 = u^2 + 2as$ for P <i>and</i> for Q, $a = +/-g$ , $cv(5.6)$ ,
	when)	1011	different expressions for s. $(3.0)$
	$-2^{2} - 9^{4^{2}} - 2^{2} (-1/2) = -1$		
cont	$v_P^2 = 8.4^2 - 2g(s + / -2)$ and		Correct sign for g, $cv(5.6)$ , $(s+/-2)$ used only once
	2		cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$	A1	Using $v = u+at t$ for P <i>and</i> for Q, $a = +/-g$
	$v_P^2 = v_Q^2$ for all values of s so that		Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A1	
	C C	M1	
	0 = 8.4 -gt and $0 = 5.6$ -gt	A1	
	0 0.1 gr und 0 5.0 gr	111	
	t $_{\rm P} = 6/7$ and t $_{\rm Q} = 4/7$ means there is a		
			Verbal contending according
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	
6(i)	2	M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of $+c$
	$v(10) = 4 - 12 + 12 = 4ms^{-1}$ (AG)	A1	Correct formula for v (no +c) and t=10
		[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2$ (+ C)	A1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2$ (+ C)	M1	
	v(20) = 16 - 16 = 0 (AG)	DA1	Dependant on M1*
	(20) 10 10 0 (10)	[5]	
(iii)		M1	For integrating v
(111)	$S = 0.4t^2 - 0.04t^3/3$ (+K)	Al	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
	S = 0.4t = 0.04t / 5 (+K)	AI	
	-(10) = 10 $40 + (0 - 20)$	D1	linear)
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \rightarrow K = 10/3$	A1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	Al	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
	5(20) 5(10) 20.0, 20.7	111	fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7
	displacement is 50./III	ום	1000pt 50.0 to 50.1

7(i)	$R = 1.5gcos21^{\circ}$	B1	
		M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5gsin21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	a = 2.24 (AG)	A1	Evidence of solving needed
		[2]	
(iva)	$v^2 = 2 \ge 2 \ge 2.24 \ge 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
		[2]	
(ivb)	······································	M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 x (-3.81) x 0.8$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
		[4]	

# Mark Scheme 4729 June 2007

1	40 cos35°	B1		
	$WD = 40\cos 35^{\circ} \times 100$	M1		
	3280 J	A1 3	ignore units	3
2	$0 = 12\sin 27^\circ t - 4.9t^2$ any correct.	M1	or $R = u^2 \sin 2\theta/g$ (B2)	
	t = 1.11method for total time	A1	correct formula only	
	$R = 12\cos 27^\circ x t$	M1	$12^2 \text{ x sin 54}^\circ / 9.8 \text{ sub in values}$	
	11.9	A1 4	11.9	4
<u> </u>	ND 1/ 250 150 ² 1/ 250 100 ²	2.01		
3 (i)	$WD = \frac{1}{2}x250x150^2 - \frac{1}{2}x250x100^2$	M1	1.5(2.500	
	1 560 000	A1	1 562 500	
	$450\ 000 = 1\ 560\ 000/t$	M1		
	3.47	A1 4		
(ii)	F = 450 000/120	M1		
	3750	A1		
	3750 = 250a 15 ms ⁻²	M1		
	15 ms ⁻²	A1 4		8
4 (i)	x = 7t	B1		
	$y = 21t - 4.9t^2$	M1	<b>or</b> – g/2	
		A1		
	$y = 21.x/7 - 4.9 x^2/49$	M1		
	$y = 3x - x^2/10$	A1 5	AG	
(ii)	$-25 = 3x - x^2 / 10$ (must be -25)	M1	<b>or</b> method for total time (5.26)	
	solving quadratic	M1	or 7 x total time	
	36.8 m	A1 3		8
			-	
5(i)	$\frac{1}{2}$ . 70.4 ²	M1		
	560 J	A1 2		
(ii)	70 x 9.8 x 6	M1		
	4120	A1 2	4116	
(iii)	60d	B1		
	8000 = 560 + 4120 + 60d	M1	4 terms	
		A1 🖌	their KE and PE	
	55.4 m	A1 4		8

6 (i)	$5\cos 30^{\circ} = 0.3x9.8 + S\cos 60^{\circ}$	M1	res. vertically (3 parts with comps)
		A1	
	2.78 N	A1 3	
(ii)	$r = 0.4 \sin 30^\circ = 0.2$	B1	may be on diagram
	$5\sin 30^{\circ} + S\sin 60^{\circ} = 0.3 \times 0.2 \times \omega^2$	M1	res. horizontally (3 parts with comps)
	9.04 rads ⁻¹	A1 3	
(iii)	$v = 0.2 \times 9.04$	M1	or previous v via $mv^2/r$
	$KE = \frac{1}{2} \times 0.3 \times (0.2 \times 9.04)^2$	M1	
	0.491 J or 0.49	A1 3	their $\omega^2 \ge 0.006$ 9

7 (i)	1.8 = -0.3 + 3m	M1	
	m = 0.7	A1 2	AG
(ii)	e = 4/6	M1	accept 2/6 for M1
	2/3	A1 2	accept 0.67
(iii)	$\pm 3f$	B1	
	1/3 ♂ f ( ◎ 1 )	B1 2	
(iv)	I = 3f x 0.73 x 0.7	M1	ok for only one minus sign for M1
		A1	
	I = 2.1 (f + 1)	A1 3	aef 2 marks only for $-2.1(f+1)$
(v)	0.3 + 6.3/4 = 0.3a + 0.7b	M1	$\operatorname{can} \operatorname{be} - 0.7b$
	3a + 7b = 18.75	A1 *	aef
	2/3 = (a-b)/5/4	M1	allow $e=3/4$ or their e for M1
	3a - 3b = 5/2	A1 *	aef * means dependent.
	solve	M1	
	<i>a</i> = 2.5	A1	$(2.46)$ allow $\pm$ $(59/24)$
	<i>b</i> = 1.6	A1 7	$(1.625)$ allow $\pm$ $(13/8)$ <b>16</b>

8 (i)	com of hemisphere 0.3 from O	B1	or 0.5 from base	
	com of cylinder $h/2$ from O	B1		
	$0.6x45 = 40x0.5 + (0.8+h/2) \times 5$ or	M1	or $40x0.3 - 5xh/2 = 45 \times 0.2$	
	45(h+0.2) = 5h/2 + 40(h+0.3)	A1	or $5(0.2 + h/2) = 40x0.1$	
	$27 = 20 + (0.8 + h/2) \ge 5$	M1	solving	
	h = 1.2	A1 6	AG	
(ii)	1.2 T	B1		
	0.8 F	B1		
	0.8F = 1.2T	M1		
	F = 3T/2	A1 4	aef	
(iii)	$F + T\cos 30^{\circ}$	B1	<b>or</b> 45 x 0.8 sin30°	
	45sin30° must be involved in res.	B1	$T \ge (1.2 + 0.8\cos 30^{\circ})$	
	resolving parallel to the slope	M1	mom. about point of contact	
	$F + T\cos 30^\circ = 45\sin 30^\circ$ aef	A1	$45.0.8\sin 30^\circ = T(1.2+0.8\cos 30^\circ)$	
	T = 9.51	A1		
	F = 14.3	A1 6		16
or	$T + F\cos 30^\circ = R\sin 30^\circ$	B1	res. horizontally	
(iii)	$R\cos 30^\circ + F\sin 30^\circ = 45$	B1	res. vertically	
	tan30°=(T+Fcos30°)/(45-Fsin30°)	M1	eliminating R	

# Mark Scheme 4730 June 2007

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using T = $2\pi/\omega$
	() []	M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$
				or for using $v = A \omega \cos \omega t$ and x
				= $A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect $\omega$
	or $x = 3\sin(1.03x0.60996)$			
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes
				shown
	For magnitudes of 2 sides correctly marked	A1		
	For magnitudes of all 3 sides correctly marked	A1		
		M1		For attempting to find angle ( $\alpha$ )
				opposite to the side of magnitude
		N / 1		0.057 x 7
		M1		For correct use of the cosine rule
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \ge 0.57 \ge 0.6\cos \alpha$	A1ft		or equivalent
	$0.399 - 0.37 + 0.0 - 2 \times 0.37 \times 0.0008 \alpha$ Angle is 140°	Alt Al	7	$(180 - 39.8)^{\circ}$
	Aligie is 140	AI	/	(180 - 59.8)
2	ALTERNATIVE METHOD			
-		M1		For using I= $\Delta$ my parallel to the
		1011		initial direction of motion
				or parallel to the impulse
	$-0.6\cos\alpha = 0.057 \text{ x } 7\cos\beta - 0.057 \text{ x } 10$	A1		
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
	010.0 0.057×10003 & +0.057×10037	M1		
		1111		For using I= $\Delta$ mv perpendicular to the initial direction of motion
				or perpendicular to the impulse
	$0.6\sin\alpha = 0.057 \text{ x } 7\sin\beta$	A1		or perpendicular to the impulse
		111		
	or $0.057 \times 10 \sin \alpha = 0.057 \times 7 \sin \gamma$			
		M1		For eliminating $\beta$ *or $\gamma$
	$0.399^2 = (0.57 - 0.6\cos\alpha)^2 + (0.6\sin\alpha)^2$	A1ft		
	or $0.399^2 = (0.6 - 0.57\cos\alpha)^2 + (0.057\sin\alpha)^2$			
1	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$

3	(i) $[0.2v  dv/dx = -0.4v^2]$	M1		For using Newton's second law
	(1/v) dv/dx = -2	A1	2	with $a = v dv/dx$ AG
	(ii) $\left[\int (1/v) dv = \int -2dx\right]$	M1	2	For separating variables and attempting to integrate
	$\ln v = -2x  (+C)$	A1		attempting to integrate
	$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
	$v = ue^{-2x}$	A1	4	AG
	(iii) $\left[\int e^{2x} dx = \int u dt\right]$	M1		For using $v = dx/dt$ and separating variables
	$e^{2x}/2 = ut  (+C)$	A1		1 0
	$[e^{2x}/2 = ut + \frac{1}{2}]$	M1		For using $x(0) = 0$
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
	ALTERNATIVE METHOD FOR PART (iii)			
	$\left[\int \frac{1}{v^2} dv = -2\int dt \rightarrow -1/v = -2t + A, \text{ and}\right]$	M1		For using $a = dv/dt$ , separating variables, attempting to integrate
	V A = -1/u]			and using $v(0) = u$
		M1		For substituting $v = ue^{-2x}$
	$-e^{2x}/u = -2t - 1/u$	A1		5
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
	15 ( 12)	D1		
4	$y=15\sin \alpha$ (=12) [4(15 \arrow a) - 2 x 12 = 4a + 2b]	B1 M1		For using principle of
	$[4(15\cos\alpha) - 3 \ge 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
	Equation complete with not more than one error	A1		
	4a + 3b = 0	A1		
		M1		For using NEL in the direction of l.o.c.
	$0.5(15\cos\alpha + 12) = b - a$	A1		
	[a = -4.5, b = 6]	M1		For solving for a and b
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$ ,	M1 M1		For solving for a and b For correct method for speed or direction of A
				For correct method for speed or direction of A Direction may be stated in any form , including $\theta = 69^{\circ}$ with
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$ , Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111°	M1	10	For correct method for speed or direction of A Direction may be stated in any

5	(i)	M1		For taking moments of forces on BC about B
	$80 \ge 0.7\cos 60^\circ = 1.4 \text{T}$	A1		
	Tension is 20N	A1		
	$[X = 20\cos 30^{\circ}]$	M1		For resolving forces horizontally
	Horizontal component is 17.3N	A1ft		ft $X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin 30^{\circ}]$	M1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	ft $Y = 80 - Tsin30^{\circ}$
	(ii)	M1		For taking moments of forces on AB, or on ABC, about A
	17.3 x 1.4sin $\alpha$ = (80 x 0.7 + 70 x1.4)cos $\alpha$ or 80x0.7cos $\alpha$ + 80(1.4cos $\alpha$ + 0.7cos60°) = 20cos60°(1.4cos $\alpha$ +1.4cos60°) +	Alft		
	$20\sin 60^{\circ}(1.4\sin \alpha + 14\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{2} 80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical expression for $\tan \alpha$
	$\alpha = 81.1^{\circ}$	A1	4	
	ALTERNATIVE METHOD FOR PART (i)			
		M1		For taking moments of forces on BC about B
	$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1		Where H and V are components of T
		M1		For using $H = V\sqrt{3}$ and solving
				simultaneous equations
	Tension is 20N	A1		
	Horizontal component is 17.3N	B1ft		ft value of H used to find T
	[Y = 80 - V]	M1	_	For resolving forces vertically
	Vertical component is 70N	A1ft	7	ft value of V used to find T

6	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
U	$\begin{array}{c} (1) & [1 - 2038x/3.23] \\ 2058x/5.25 = 80 \times 9.8 & (x = 2) \end{array}$	A1		For using $I = \lambda x/L$
	OP = 7.25m (x - 2)	A1	3	AG From 5.25 + 2
	(ii) Initial $PE = (80 + 80)g(5) (= 7840)$	B1		A0110III 5.25 + 2
	or $(80 + 80)$ gX used in energy equation	DI		
	Initial KE = $\frac{1}{2}(80 + 80)3.5^2$ (= 980)	B1		
	[Initial $EE = 2058x2^2/(2x5.25)$ (= 784),	M1		For using $EE = \lambda x^2/2L$
	Final $EE = 2058x7^2/(2x5.25)$ (= 9604), or	1411		Tor using $LL = \pi \chi/2L$
	$2058(X + 2)^{2}/(2x5.25)]$			
	[Initial energy = 7840 + 980 + 784,	M1		For attempting to verify
	final energy = $9604$			compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4) \rightarrow$			principle of conservation of
	$196X^2 - 784X - 980 = 0$ ]			energy, or using the principle
				and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach	A1	5	AG
	the net			
[	(iii) [PE gain = $80g(7.25 + 5)$ ]	M1		For finding PE gain from net
				level to O
	PE gain = $9604$	A1		
	PE gain = EE at net level $\rightarrow$ P just reaches O	A1	3	AG
	(iv) For any one of 'light rope', 'no air	B1		
	resistance', 'no energy lost in rope'			
	For any other of the above	B1	2	
	FIRST ALTERNATIVE METHOD FOR			
	PART (ii)			
	[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second
	[100g 2030x/3.25 100v dv/dx]	1411		law with $a = v dv/dx$ ,
				separating the variables and
				attempting to integrate
	$v^2/2 = gx - 1.225x^2 (+C)$	A1		Any correct form
		M1		For using $v(2) = 3.5$
	C = -8.575	A1		
	$[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P\&Q just$	A1	5	AG
	reach the net			
	SECOND ALTERNATIVE METHOD FOR PART			
	(ii) 	<b>D</b> 1		
	$\ddot{x} = g - 2.45x$ (= -2.45(x - 4))	B1		2
		M1		For using $n^2 = 2.45$ and
				$v^2 = n^2(A^2 - (x - 4)^2)$
	$3.5^2 = 2.45(A^2 - (-2)^2) \qquad (A = 3)$	A1		
	[(4-2)+3]	M1		For using 'distance travelled
				downwards by P and $Q =$
				distance to new equilibrium
		A 1	~	position $+ A$
	distance travelled downwards by P and $Q = 5 \Rightarrow P \& Q$	A1	5	AG
	just reach the net			

7	(i) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
/	For not more than one error in $\begin{bmatrix} a & -0.7 \\ -0.4 \end{bmatrix}$	A1		For using $a = v/r$
	$T - 0.8g\cos 60^\circ = 0.8x0.7^2/0.4$	AI		
	•	A 1		
	Above equation complete and correct	A1	4	
	Tension is 4.9N	<u>A1</u>	4	
	(ii)	M1		For using the principle of
				conservation of energy
	$\frac{1}{2} 0.8 v^2 =$	A1		(v = 2.1)
	$\frac{1}{2} 0.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^\circ$			
	(2.1-0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms ⁻¹	A1	. 4	AG
	(iii)	M1		For using Newton's second
				law transversely
	$(m)0.4\ddot{\theta} = -(m)g\sin\theta$	A1		*Allow $m = 0.8$ (or any other
				numerical value)
	$[0.4\ddot{\theta} \approx -g\theta]$	M1		For using $\sin \theta \approx \theta$
	$\int \frac{1}{2} \text{ m} 0.15^2 = \text{mg} 0.4(1 - \cos \theta_{\text{max}})$	M1		For using the principle of
	$\rightarrow \theta_{\text{max}} = 4.34^{\circ} (0.0758 \text{ rad})$ ]			conservation of energy to
				find
				$ heta_{ m max}$
	$\theta_{\text{max}}$ small justifies 0.4 $\ddot{\theta} \approx -g\theta$ , and this implies	A1	5	- 1147
	$\sigma_{\text{max}}$ small justifies 0.40 ~ -g $\sigma$ , and this implies SHM		-	
	(iv) $[T = 2\pi / \sqrt{24.5} = 1.269]$	M1		For using T = $2\pi/n$
		1111		C C
	$[\sqrt{24.5} t = \pi]$			or for a lating with an air at = 0
				for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
			•	(considering velocity)
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2} T$

# Mark Scheme 4731 June 2007

#### **Mark Scheme**

<b>1 (i)</b> Using $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ , $56 = 0 + \frac{1}{2} \alpha \times 8^2$ $\alpha = 1.75 \text{ rad s}^{-2}$ <b>1 M1</b> A1 <b>2</b>	
AI	
2	
(ii) Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$ , $36^2 = 20^2 + 2 \times 1.75\theta$ M1	
$\theta = 256 \text{ rad}$ A1 ft ft is $448 \div \alpha$	
2	
2 Volume is $\int_{0}^{a} \pi (4a^2 - x^2) dx = \pi \left[ 4a^2x - \frac{1}{3}x^3 \right]_{0}^{a}$ M1 $\pi$ may be omitted through (Limits not required)	iout
$=\frac{11}{3}\pi a^3$ A1	
$\int_{0}^{a} \pi x (4a^2 - x^2) \mathrm{d}x \qquad \qquad$	
$=\pi \left[ 2a^2x^2 - \frac{1}{4}x^4 \right]_0^a$ A1 (Limits not required)	
$= \frac{7}{4}\pi a^4$	
$\bar{x} = \frac{\frac{7}{4}\pi a^4}{\frac{11}{3}\pi a^3} = \frac{21}{44}a$ M1 for $\frac{\int x y^2 dx}{\int y^2 dx}$	
A1 7	
<b>3 (i)</b> $I = 6.2 + 2.8 = 9.0 \text{ kg m}^2$ B1	
(ii) WD against frictional couple is $L \times \frac{1}{2}\pi$ B1	
Loss of PE is $6 \times 9.8 \times 1.3$ (= 76.44) B1	
Gain of KE is $\frac{1}{2} \times 9.0 \times 2.4^2$ (= 25.92) B1 ft	
By work-energy principle,	
$L \times \frac{1}{2}\pi = 76.44 - 25.92$ M1 Equation involving WD, H	KE and
L = 32.2  Nm A1 PE	
5 Accept 32.1 to 32.2	
(iii) $6 \times 9.8 \times 0.8 - L = I \alpha$ M1 Moments equation A1 ft	
$\alpha = 1.65 \text{ rad s}^{-2}$	
3	

4 (i)	MI of elemental disc about a diameter is		$\frac{M}{3a}$ may be $\rho \pi a^2$ throughout
	$\frac{1}{4} \left(\frac{M}{3a}  \delta x\right) a^2$	B1	(condone use of $\rho = 1$ )
	MI of elemental disc about <i>AB</i> is $\frac{1}{4} \left( \frac{M}{3a}  \delta x \right) a^2 + \left( \frac{M}{3a}  \delta x \right) x^2$	M1 A1	Using parallel axes rule (can award A1 for $\frac{1}{4}ma^2 + mx^2$ )
	$I = \frac{M}{3a} \int_{0}^{3a} (\frac{1}{4}a^{2} + x^{2}) dx$	M1 A1	Integrating MI of disc <i>about AB</i> Correct integral expression for <i>I</i>
	$= \frac{M}{3a} \left[ \frac{1}{4} a^2 x + \frac{1}{3} x^3 \right]_0^{3a}$ $= \frac{M}{3a} \left( \frac{3}{4} a^3 + 9a^3 \right)$		
	$= \frac{-\frac{1}{3a}(\frac{1}{4}a^{2} + 3a^{2})}{= \frac{13}{4}Ma^{2}}$	M1	Obtaining an expression for <i>I</i> in terms of <i>M</i> and <i>a</i> Dependent on previous M1
	$=\frac{1}{4}Ma$	A1 (ag) 7	
(ii)	Period is $2\pi \sqrt{\frac{I}{Mgh}}$	M1	or $-Mgh\sin\theta = I\ddot{\theta}$
	$=2\pi\sqrt{\frac{\frac{13}{4}Ma^2}{Mg\frac{3}{2}a}}$	A1	
	$=2\pi\sqrt{\frac{13a}{6g}}$	A1 3	

5 (i)	$\frac{\sin \theta}{12} = \frac{\sin 115}{16}$ $\theta = 42.8^{\circ}$ Bearing of $\mathbf{v}_{B}$ is 007.2° $\frac{u}{\sin 22.2} = \frac{16}{\sin 115}$ u = 6.66 Time taken is $\frac{2400}{6.664} = 360$ s	M1 A1 M1 A1 M1 A1 M1*A1 ft <b>8</b>	Relative velocity on bearing 050 Correct velocity diagram; or $\begin{pmatrix} u \sin 50 \\ u \cos 50 \end{pmatrix} = \begin{pmatrix} 16 \sin \alpha \\ 16 \cos \alpha \end{pmatrix} - \begin{pmatrix} 12 \sin 345 \\ 12 \cos 345 \end{pmatrix}$ or eliminating $u$ (or $\alpha$ ) or obtaining equation for $u$ (or $\alpha$ ) For equations in $\alpha$ and $t$ M1*M1A1 for equations $M1$ for eliminating $t$ (or $\alpha$ ) $A1$ for $\alpha = 7.2$ $M1A1$ ft for equation for $t$ (or $\alpha$ )
(ii)	$ \begin{array}{c}                                     $	M1 A1 M1 A1 <b>4</b>	A1 cao for $t = 360$ Relative velocity perpendicular to $\mathbf{v}_B$ Correct velocity diagramFor alternative methods: M2 for a completely correct method A2 for 018.6 (give A1 for a correct relevant angle)

6 (i)	$I = \frac{1}{3}ma^2 + m(\frac{1}{3}a)^2$		M1		Using parallel axes rule
• (1)	$\frac{1}{3}ma^{2} + m(\frac{3}{3}a)$ $= \frac{4}{9}ma^{2}$				
	$mg(\frac{1}{3}a\cos\theta) = I\alpha$		A1		
			M1		
	$\alpha = \frac{\frac{1}{3}mga\cos\theta}{\frac{4}{9}ma^2} = \frac{3g\cos\theta}{4a}$		A1 (ag)	4	
(ii)	By conservation of energy,		M1		
	$\frac{1}{2}I\omega^2 = mg(\frac{1}{3}a\sin\theta)$		A1 ft		
	$\frac{2}{9}ma^2\omega^2 = \frac{1}{3}mga\sin\theta$				
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$		A1	3	Condone $\omega^2 = \frac{3g\sin\theta}{2a}$
	OR $\omega \frac{d\omega}{d\theta} = \frac{3g\cos\theta}{4a}$	M1			
	$\frac{1}{2}\omega^2 = \int \frac{3g\cos\theta}{4a} d\theta$ $= \frac{3g\sin\theta}{4a} (+C)$	Α 1			
	+ <i>u</i>	A1			
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$	A1			
(iii)	Acceleration parallel to rod is $(\frac{1}{3}a)\omega^2$		B1		
	$F - mg\sin\theta = m(\frac{1}{3}a)\omega^2$		M1		Radial equation with 3 terms
	$F - mg\sin\theta = \frac{1}{2}mg\sin\theta$				
	$F = \frac{3}{2}mg\sin\theta$		A1		
	Acceleration perpendicular to rod is $(\frac{1}{3}a)\alpha$		B1 ft		ft is $r\alpha$ with $r$ the same as before
	$mg\cos\theta - R = m(\frac{1}{3}a)\alpha$		M1		Transverse equation with 3 terms
	$mg\cos\theta - R = \frac{1}{4}mg\cos\theta$				
	$R = \frac{3}{4}mg\cos\theta$		A1		
				6	
	OR $R(\frac{1}{3}a) = I_G \alpha$	M1			Must use $I_G$
	$R(\frac{1}{3}a) = (\frac{1}{3}ma^2) \left(\frac{3g\cos\theta}{4a}\right)$	A1			
	$R = \frac{3}{4}mg\cos\theta$	A1			
(iv)	On the point of slipping, $F = \mu R$				
	$\frac{3}{2}mg\sin\theta = \mu(\frac{3}{4}mg\cos\theta)$		M1		
	$\tan\theta = \frac{1}{2}\mu$		A1 (ag)	2	Correctly obtained Dependent on 6 marks earned in (iii)

### Mark Scheme

7 (i)	GPE = $(-) mg(2a\cos\theta)\cos\theta$	B1	or $(-) mg(a + a\cos 2\theta)$
	$EPE = \frac{\frac{1}{2}mg}{2a}(AR - a)^2$	M1	
	$=\frac{\frac{1}{2}mg}{2a}(2a\cos\theta-a)^2$	A1	
	$V = \frac{1}{4}mga(2\cos\theta - 1)^2 - 2mga\cos^2\theta$		
	$= mga(\cos^2\theta - \cos\theta + \frac{1}{4} - 2\cos^2\theta)$		
	$= mga(\frac{1}{4} - \cos\theta - \cos^2\theta)$	A1 (ag)	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(\sin\theta + 2\cos\theta\sin\theta)$	B1	
	$= mga\sin\theta(1 + 2\cos\theta)$ Equilibrium when $\frac{dV}{d\theta} = 0$	M1	
	ie when $\theta = 0$	A1 (ag) 3	
(iii)	KE is $\frac{1}{2}m(2a\dot{\theta})^2$	B1	
	$2ma^2\dot{\theta}^2 + V = \text{constant}$ Differentiating with respect to <i>t</i> ,	M1	
	$4ma^2\dot{\theta}\ddot{\theta} + \frac{\mathrm{d}V}{\mathrm{d}\theta}\dot{\theta} = 0$	M1	(can award this M1 if no KE term)
	$4ma^2\dot{\theta}\ddot{\theta} + mga\sin\theta(1 + 2\cos\theta)\dot{\theta} = 0$	A1 ft	
	$\ddot{\theta} = -\frac{g}{4a}\sin\theta(1+2\cos\theta)$	A1 (ag) 5	SR B2 (replacing the last 3 marks) for the given result correctly obtained by differentiating w.r.t. $\theta$
(iv)	When $\theta$ is small, $\sin \theta \approx \theta$ , $\cos \theta \approx 1$	M1	
	$\ddot{\theta} \approx -\frac{g}{4a}\theta(1+2) = -\frac{3g}{4a}\theta$	A1	
	Period is $2\pi \sqrt{\frac{4a}{3g}}$	A1 3	
		5	

# Mark Scheme 4732 June 2007

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW.

1			an answer is seen and then later rounded, apply ISW.
	$(0 \times 0.1) + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4$	M1	$\geq$ 2 non-zero terms correct eg $\div$ 4: M0
	= 2(.0)	A1	
	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 $ (= 5)	M1	$\geq 2$ non-zero terms correct $\div 4$ : M0
	$-2^2$	M1	Indep, ft their $\mu$ . Dep +ve result
	= 1	A1	
		5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4$ :M2
		C	$\geq 2 \text{ non-0 correct: } M1 + 4: M0$
Total		5	
2	UK Fr Ru Po Ca	5	
2	1 2 3 4 5 or 5 4 3 2 1	M1	Consistent attempt rank RCFUP
	4 3 1 5 2 2 3 5 1 4	A1	35214 31452
			other judge 12345 54321
	$\Sigma d^2$	M1	
	(= 24)		
	$r_s = 1 - \underbrace{\frac{6 \times 24^{\circ}}{5 \times (5^2 - 1)}}_{5 \times (5^2 - 1)}$	M1	All 5 $d^2$ attempted & added. Dep ranks
			att'd
	$=-\frac{1}{5}$ or $-0.2$	A1	$43 - 15^2/5$
		5	Dep $2^{nd}$ M1 $\sqrt{((55-15^2/5)(55-15^2/5))}$
			Corr sub in ≥ 2 S's M1
			All correct: M1
Total		5	
	$^{15}C_7 \text{ or } ^{15!}/_{7!8!}$	M1	
	6435	Al	
		2	
ii	${}^{6}C_{3} \times {}^{9}C_{4} \text{ or } {}^{6!}/_{3 3 } \times {}^{9!}/_{4 5 }$	 M1	Alone except allow $\div$ ¹⁵ C ₇
11		1411	Or ${}^{6}P_{3} \times {}^{9}P_{4}$ or ${}^{6!}/_{3!} \times {}^{9!}/_{5!}$ Allow $\div {}^{15}P_{7}$
			NB not ${}^{6!}_{,31} \times {}^{9!}_{,41}$
	2520	A1	362880
	2320	2	502880
Total		4	
	1/		
4ia	$^{1}/_{3}$ oe	B1 1	B↔W MR: max (a)B0(b)M1M1(c)B1M1
b	P(BB) + P(WB) attempted	M1	$Or \frac{4}{10} \times \frac{3}{9} OR \frac{6}{10} \times \frac{4}{9} \text{ correct}$
	$= \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9} \text{ or } \frac{2}{15} + \frac{4}{15}$	M1	
	$= \frac{1}{10} \times \frac{1}{9} + \frac{1}{10} \times \frac{1}{9} $ or $\frac{1}{15} + \frac{1}{15}$ $= \frac{2}{5}$ oe	Al	NB $\frac{4}{10} \times \frac{4}{10} + \frac{6}{10} \times \frac{4}{10} = \frac{2}{5}$ : M1M0A0
	15 00		$10^{-10}$ , $10^{-10}$ , $10^{-10}$ , $10^{-10}$ , $10^{-10}$
		3	
	Denome 9 & 8 seen or implied	3 B1	
	Denoms 9 & 8 seen or implied $\frac{3}{2} + \frac{3}{2} + \frac{6}{2} + \frac{3}{2}$	B1	$Or^{2}/_{15}$ as numerator
	Denoms 9 & 8 seen or implied ${}^{3}_{/9} \times {}^{2}_{/8} + {}^{6}_{/9} \times {}^{3}_{/8}$		Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ Or $\frac{4}{15}$ Or $\frac{4}{15}$
		B1	$Or^{2}/_{15}$ as numerator
с	$3/9 \times 2/8 + 6/9 \times 3/8$	B1 M1	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}\frac{2}{10}$ Or $\frac{4}{10}x^{6}/9x^{3}/8 + 4/10}{10}x^{3}/9x^{2}/8}$
с		B1 M1 A1	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ Or $\frac{4}{15}$ Or $\frac{4}{15}$
с	${}^{3}/_{9} \times {}^{2}/_{8} + {}^{6}/_{9} \times {}^{3}/_{8}$ = ${}^{1}/_{3}$ oe	B1 M1	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}\frac{2}{4}_{10}$ Or $\frac{4}{10}x^{6}/9x^{3}/8 + 4/10}{4}x^{5}/9x^{4}/8 + 6/10}x^{4}/9x^{3}/8}$ May not see wking
с	$3/9 \times 2/8 + 6/9 \times 3/8$	B1 M1 A1 3	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ $\frac{2}{10}$ Or $\frac{4}{10} \frac{4}{10} \frac{x^{6}}{9} \frac{x^{3}}{8} + \frac{4}{10} \frac{x^{3}}{9} \frac{x^{2}}{8}}{above + \frac{6}{10} \frac{x^{5}}{9} \frac{x^{4}}{8} + \frac{6}{10} \frac{x^{4}}{9} \frac{x^{3}}{8}}{8}$ May not see wking Prob changes as discs removed
c	${}^{3}/_{9} \times {}^{2}/_{8} + {}^{6}/_{9} \times {}^{3}/_{8}$ = ${}^{1}/_{3}$ oe	B1 M1 A1	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ $\frac{2}{10}$ Or $\frac{4}{10} \times \frac{6}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}}{above + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{3}{9} \times \frac{3}{8}}{above + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{9} \times \frac{3}{9} \times \frac{3}{9}}$ May not see wking Prob changes as discs removed Limit to no. of discs. Fixed no. of discs
c	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$ = $^{1}/_{3}$ oe P(Blue) not constant or discs not indep,	B1 M1 A1 3	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ $\frac{2}{10}$ Or $\frac{4}{10} \frac{4}{10} \frac{x^{6}}{9} \frac{x^{3}}{8} + \frac{4}{10} \frac{x^{3}}{9} \frac{x^{2}}{8}}{above + \frac{6}{10} \frac{x^{5}}{9} \frac{x^{4}}{8} + \frac{6}{10} \frac{x^{4}}{9} \frac{x^{3}}{8}}{8}$ May not see wking Prob changes as discs removed
c	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$ = $^{1}/_{3}$ oe P(Blue) not constant or discs not indep,	B1 M1 A1 3	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ $\frac{2}{10}$ Or $\frac{4}{10} \times \frac{6}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}}{above + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{3}{9} \times \frac{3}{8}}{above + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{9} \times \frac{3}{9} \times \frac{3}{9}}$ May not see wking Prob changes as discs removed Limit to no. of discs. Fixed no. of discs
c	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$ = $^{1}/_{3}$ oe P(Blue) not constant or discs not indep,	B1 M1 A1 3	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ $\frac{4}{10}$ Or $\frac{4}{10} \times \frac{6}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}}{above + \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} + \frac{6}{10} \times \frac{4}{9} \times \frac{3}{8}}$ May not see wking Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out
c	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$ = $^{1}/_{3}$ oe P(Blue) not constant or discs not indep,	B1 M1 A1 3	Or $\frac{2}{15}$ as numerator Or $\frac{2}{15}$ $\frac{4}{10}$ Or $\frac{4}{10} \frac{4}{10} \frac{x^{6}}{9} \frac{x^{3}}{8} + \frac{4}{10} \frac{x^{3}}{9} \frac{x^{2}}{8}}{above + \frac{6}{10} \frac{x^{5}}{9} \frac{x^{4}}{8} + \frac{6}{10} \frac{x^{4}}{9} \frac{x^{3}}{8}}{10}$ May not see wking Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue"

5i	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind	Allow digits100 to 110
		2	
iia	Median = 29 to 29.9	B1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5  to  9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77% : SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

### **Mark Scheme**

6ia	Correct subst in $\geq$ two S formulae	M1		Any version
	$\frac{767 - \frac{60 \times 72}{8}  \text{or} \frac{227}{\sqrt{698}\sqrt{162}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}}$	M1		All correct. Or <u>767-8x7.5x9</u> $\sqrt{((1148-8x7.5^2)(810-8x9^2))}$ or correct substn in any correct formula for <i>r</i>
	$\frac{\sqrt{(1148 - \frac{1}{8})(810 - \frac{1}{8})}}{= 0.675 (3 \text{ sfs})}$	A1	3	
b	1 y always increases with x or ranks same oe	B1 B1	2	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because y still increasing with x oe	B1 B1	2	$\Sigma d^2$ still 0. Still same order. Ignore extra NOT differences still the same. NOT ft (i)(b)
iii	13.8 to 14.0	B1	1	
iv	<ul><li>(iii) or graph or diag or my est</li><li>Takes account of curve</li></ul>	B1 B1	2	Must be clear which est. Can be implied. "This est" probably $\Rightarrow$ using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	2	
7i	P(contains voucher) constant oe Packets indep oe	B1 B1	2	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT $1 - 0.9857 = 0.0143$ (see (iii))
iii	(1 - 0.9857) = 0.014(3) (2 sfs)	B1ft 1		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10 ⁻³ (3 sfs)	B1 M1 M1 A1	4	or $0.75^{a} \times 0.25^{b} (a + b = 11)$ or ${}^{11}C_{6}$ dep B1
Total		9	)	

0.		3.64				
8i	$\sqrt{0.04} (= 0.2)$	M1				
	$(1 - \text{their } \sqrt{0.04})^2$	M1				
	= 0.64	A1 3				
ii	$1-p \text{ seen } M1 \text{ for either } 2p(1-p) = 0.42 \text{ or } p(1-p) = 0.21 \text{ oe } 2p^2 - 2p + 0.42(= 0) \text{ or } p^2 - p + 0.21(= 0) \\ \underline{2\pm\sqrt{((-2)^2 - 4 \times 0.42)}}_{2 \times 2} \text{ or } \underline{1\pm\sqrt{((-1)^2 - 4 \times 0.21)}}_{2 \times 1} \\ \text{ or } (p-0.7)(p-0.3)=0 \text{ or } (10p-7)(10p-3)=0 \\ p = 0.7 \text{ or } 0.3$	B1 M1 M1 A1 5	2pq= 0.42 or pq =0.21 Allow pq=0.42 or opp signs, correct terms any order (= 0) oe Correct Dep B1M1M1 Any corr subst'n or fact'n Omit 2 in 2 nd line: max B1M1M0M0A0 One corr ans with no or inadeq wking: SC1 eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or $0.6$ $p^2 + 2pq + q^2 = 1$ B1 $p^2 + q^2 = 0.58$ } $p = 0.21/q$ } $p^4 - 0.58p^2 + 0.0441 = 0$ M1 corr subst'n or fact'n M1			
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Total		8				
9ia	$1 / \frac{1}{5}$	M1				
	= 5	A1 2				
b	$\binom{4}{5}^3 \times \frac{1}{5}$	M1				
	$= {}^{64}/_{625}$ or 0.102 (3 sfs)	A1 2				
с	$\binom{4}{5}^4$	M1	or 1- $\binom{1}{5} + \frac{4}{5} \times \frac{1}{5} + \binom{4}{5}^{2} \times \frac{1}{5} + \binom{4}{5}^{3} \times \frac{1}{5}$ NOT 1 - $\binom{4}{5}^{4}$			
	$=\frac{256}{625}$ or a.r.t 0.410 (3 sfs) or 0.41	A1 2				
110	$\mathbf{D}(\mathbf{V},1)$ $\mathbf{D}(\mathbf{V},2)$ $\mathbf{D}(\mathbf{V},2)$ 4	111 2	$\mathbf{P}(\mathbf{Y}, 1) + \mathbf{P}(\mathbf{Y}, 2) + \mathbf{P}(\mathbf{Y}, 2) = 2 + \frac{4}{4}$			
iia	$P(Y=1) = p, P(Y=3) = q^2p, P(Y=5) = q^4p$	B1 1	P(Y=1)+P(Y=3)+P(Y=5)= $p + q^2p + q^4p$ p, p(1 - p) ² , p(1 - p) ⁴ q ¹⁻¹ , q ³⁻¹ , q ⁵⁻¹ or any of these with 1 - p instead of q "Always q to even power × p" Either associate each term with relevant prob Or give indication of how terms derived ≥ two terms			
b			$p, p(1 - p)^2, p(1 - p)^*$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1 - p$ instead of $q$ "Always $q$ to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq$ two terms			
	P(Y=1) = p, P(Y=3) = q ² p, P(Y=5) = q ⁴ p Recog that c.r. = q ² or (1 - p) ² $S_{\infty} = \frac{p}{1 - q^{2}}$ or $\frac{p}{1 - (1 - p)^{2}}$	B1 1	$p, p(1 - p)^2, p(1 - p)^*$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1 - p$ instead of $q$ "Always $q$ to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived			
	Recog that c.r. = $q^2$ or $(1 - p)^2$ $S_{\infty} = \frac{p}{1 - q^2}$ or $\frac{p}{1 - (1 - p)^2}$ $P(odd) = \frac{1 - q}{1 - q^2}$	B1 1 M1	$p, p(1 - p)^2, p(1 - p)^*$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1 - p$ instead of $q$ "Always $q$ to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq$ two terms			
	Recog that c.r. = $q^2$ or $(1-p)^2$ $S_{\infty} = \frac{p}{1-q^2}$ or $\frac{p}{1-(1-p)^2}$	B1 1 M1 M1 M1	$p, p(1 - p)^2, p(1 - p)^*$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1 - p$ instead of $q$ "Always $q$ to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq$ two terms or eg $r = q^2 p/p$			

4732	Mark Scheme	June 2007
Total	11	

# Mark Scheme 4733 June 2007

1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen			
		249509.16/100 – (their $\bar{x}^2$ )	M1		Biased estimate: 162.2016: can get B1M1M0			
		× 100/99	M1		Multiply by $n/(n-1)$			
		= 163.84	A1	4	Answer, 164 or 163.8 or 163.84			
	(ii)	No, Central Limit theorem applies,	B2	2	"No" with statement showing CLT is understood			
	(11)	so can assume distribution is	D2	4	(though CLT does not need to be mentioned)			
		normal			[SR: No with reason that is not wrong: B1]			
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied			
-		$\approx Po(3.25)$	M1		Poisson, <i>or</i> correct N on their $B(n, p)$			
		$e^{-\lambda} \frac{\lambda^4}{2}$	A1√		Parameter their <i>np</i> , <i>or</i> correct parameter(s) $$			
		$e^{-\frac{1}{4!}}$	M1		Correct formula, or interpolation			
		= 0.180	A1	5	Answer, 0.18 or a.r.t. 0.180			
		- 0.180		5	[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1]			
3	(i)	Binomial	B1	1	Binomial stated or implied			
5	(ii)	Each element equally likely	B1		All elements, or selections, equally likely stated			
	(11)	Choices independent	B1	2	Choices independent [not just "independent"]			
		enoices independent	DI	2	[can get B2 even if (i) is wrong]			
4	(i)	<i>Two of:</i> Distribution symmetric	B1		One property			
-	(1)	No substantial truncation	B1	2	Another definitely different property			
		Unimodal/Increasingly	DI	2	Don't give both marks for just these two			
		unlikely further from $\mu$ , etc			"Bell-shaped": B1 only unless "no truncation"			
	(ii)	Variance $8^2/20$	M1		Standardise, allow cc, don't need <i>n</i>			
	(11)		A1		Denominator (8 or $8^2$ or $\sqrt{8}$ ) ÷ (20 or $\sqrt{20}$ or $20^2$ )			
		$z = \frac{47.0 - 50.0}{\sqrt{2}} = -1.677$	A1 A1		<i>z</i> -value, a.r.t. $-1.68$ or $+1.68$			
		$2 = \sqrt{8^2/20}$	A1 A1	4	Answer, a.r.t. 0.953			
		$\Phi(1.677) = 0.9532$	A1	-	Allswei, a.i.t. 0.955			
5	(i)	$H_1: \lambda > 2.5 \text{ or } 15$	B1	1	$\lambda > 2.5$ or 15, allow $\mu$ , don't need "H ₁ "			
5	(i) (ii)	$H_1: \lambda > 2.5 \text{ or } 15$ Use parameter 15	B1 M1	1	$\lambda > 2.5 \text{ or } 15, \text{ allow } \mu, \text{ don't need "H}_{J}$ " $\lambda = 15 \text{ used} \qquad [N(15, 15) \text{ gets this mark only}]$			
5				1				
5		Use parameter 15 P(> 23)	M1 M1		$\lambda = 15$ used [N(15, 15) gets this mark only]			
5		Use parameter 15	M1	1 3	$\lambda = 15$ used [N(15, 15) gets this mark only] Find P(> 23 or $\ge 23$ ), final answer < 0.5			
5		Use parameter 15 P(> 23)	M1 M1		λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here]			
5		Use parameter 15 P(> 23)	M1 M1		$ \begin{split} \lambda &= 15 \text{ used } & [N(15, 15) \text{ gets this mark only}] \\ \text{Find P}(> 23 \text{ or } \ge 23), \text{ final answer} < 0.5 \\ & \text{eg } 0.0327 \text{ or } 0.0122 \\ \text{Answer, } 1.95\% \text{ or } 2\% \text{ or } 0.0195 \text{ or } 0.02 \end{split} $			
5	(ii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195 or 1.95%	M1 M1 A1		λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here]			
5	(ii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367	M1 M1 A1		λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo			
5	(ii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$	M1 M1 A1 M1		λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805			
5	(ii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$	M1 M1 A1 M1		λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85]			
5	(ii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$ Parameter = 17	M1 M1 A1 M1 A1	3	λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85]			
5	(ii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$ Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ $H_0: p = 0.19, H_1: p < 0.19$	M1 M1 A1 M1 A1	3	λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17]			
	(ii) (iii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$ Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ $H_0: p = 0.19, H_1: p < 0.19$ where p is population proportion	M1 M1 A1 M1 A1 M1 M1	3	λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0]			
	(ii) (iii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$ Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ $H_0: p = 0.19, H_1: p < 0.19$	M1 M1 A1 M1 A1 M1 B2	3	λ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or x̄ or r: B0			
	(ii) (iii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$ Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ $H_0: p = 0.19, H_1: p < 0.19$ where p is population proportion	M1 M1 A1 M1 A1 M1 B2 M1	3	$\lambda$ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or $\bar{x}$ or r: B0 Binomial probabilities, allow 1 term only			
	(ii) (iii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367 P( $\leq 23 \mid \lambda = 18$ ) = 0.8989 Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ H ₀ : $p = 0.19$ , H ₁ : $p < 0.19$ where $p$ is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841 Compare 0.1	M1 M1 A1 M1 A1 M1 B2 M1 A1 A1 B1	3	$\lambda = 15$ used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or $\bar{x}$ or r: B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693]			
	(ii) (iii)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367 P( $\leq 23 \mid \lambda = 18$ ) = 0.8989 Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ H ₀ : $p = 0.19$ , H ₁ : $p < 0.19$ where $p$ is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841	M1 M1 A1 M1 A1 M1 B2 M1 A1 A1	3	$\lambda = 15$ used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or x̄ or r: B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693] Probability, a.r.t. 0.084			
	(ii) (iii) (i)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367 P( $\leq 23 \mid \lambda = 18$ ) = 0.8989 Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ H ₀ : $p = 0.19$ , H ₁ : $p < 0.19$ where $p$ is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841 Compare 0.1	M1 M1 A1 M1 A1 M1 B2 M1 A1 A1 B1	3	$\lambda$ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – $\lambda$ )/ $\sqrt{\lambda}$ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but <i>x</i> or $\bar{x}$ or <i>r</i> : B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693] Probability, a.r.t. 0.084 Explicit comparison of "like with like"			
	(ii) (iii) (i)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367 P( $\leq 23 \mid \lambda = 18$ ) = 0.8989 Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ H ₀ : $p = 0.19$ , H ₁ : $p < 0.19$ where $p$ is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841 Compare 0.1 Add binomial probs until ans > 0.1	M1 M1 A1 M1 A1 M1 B2 M1 A1 A1 B1 A1	3	$\lambda$ = 15 used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – $\lambda$ )/ $\sqrt{\lambda}$ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but <i>x</i> or $\bar{x}$ or <i>r</i> : B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693] Probability, a.r.t. 0.084 Explicit comparison of "like with like"			
	(ii) (iii) (i)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367 P( $\leq 23 \mid \lambda = 18$ ) = 0.8989 Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ H ₀ : $p = 0.19$ , H ₁ : $p < 0.19$ where $p$ is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841 Compare 0.1 Add binomial probs until ans > 0.1 Critical region $\leq 1$	M1 M1 A1 M1 A1 M1 B2 M1 A1 A1 B1 A1 B1	3	$\lambda = 15$ used [N(15, 15) gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/ $\sqrt{\lambda}$ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or $\overline{x}$ or r: B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693] Probability, a.r.t. 0.084 Explicit comparison of "like with like" [P(≤ 2) = 0.239]			
	(ii) (iii) (i)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% $P(\le 23 \mid \lambda = 17) = 0.9367$ $P(\le 23 \mid \lambda = 18) = 0.8989$ Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ $H_0: p = 0.19, H_1: p < 0.19$ where p is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841 Compare 0.1 Add binomial probs until ans > 0.1 Critical region $\le 1$ Reject $H_0$	M1 M1 A1 M1 A1 M1 B2 M1 A1 B1 A1 B1 M1	3	λ = 15  used  [N(15, 15)  gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or x̄ or r: B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693] Probability, a.r.t. 0.084 Explicit comparison of "like with like" [P(≤ 2) = 0.239] Correct deduction and method [needs P(≤ 1)]			
	(ii) (iii) (i)	Use parameter 15 P(> 23) 1 - 0.9805 = 0.0195  or  1.95% P( $\leq 23 \mid \lambda = 17$ ) = 0.9367 P( $\leq 23 \mid \lambda = 18$ ) = 0.8989 Parameter = 17 $\lambda = 17/6 \text{ or } 2.83$ H ₀ : $p = 0.19$ , H ₁ : $p < 0.19$ where $p$ is population proportion $0.81^{20} + 20 \times 0.81^{19} \times 0.19$ = 0.0841 Compare 0.1 Add binomial probs until ans > 0.1 Critical region $\leq 1$ Reject H ₀ Significant evidence that proportion	M1 M1 A1 M1 A1 M1 B2 M1 A1 B1 A1 B1 M1	3	λ = 15  used  [N(15, 15)  gets this mark only] Find P(> 23 or ≥ 23), final answer < 0.5 eg 0.0327 or 0.0122 Answer, 1.95% or 2% or 0.0195 or 0.02 [SR: 2-tailed, 3.9% gets 3/3 here] One of these, or their complement: .9367, .8989, 0.9047, 0.8551, .9317, .8933, .9907, .9805 Parameter 17 [17.1076], needs P(≤ 23), cwo [SR: if insufficient evidence can give B1 for 17] Their parameter ÷ 6 [2.85] [SR: Solve (23.5 – λ)/√λ = 1.282 M1; 18.05 A0] Correct, B2. One error, B1, but x or x̄ or r: B0 Binomial probabilities, allow 1 term only Correct expression [0.0148 + 0.0693] Probability, a.r.t. 0.084 Explicit comparison of "like with like" [P(≤ 2) = 0.239] Correct deduction and method [needs P(≤ 1)] Correct conclusion in context			

7	(i)	1				B1		Horiz	zontal straigh	nt line		
		×				B1				la, symmetric about 0		
						B1	3 Completely correct, including					
								between two			-	
							Don't need vertical lines			al lines or he	orizontal lines outside	
								range, but don't give last B1 if hor			f horizontal line	
								continues past "±1"				
		(ii) <u>Cia aqually likaly ta taka any yalua</u>							1 1 1 1			
	(11)	<ul><li>S is equally likely to take any value in range, T is more likely at extremities</li></ul>		B2 2		Correct statement about distributions ( <i>not</i> graphs)						
						[Partial statement, or correct description for one only: B1]						
	(iii)		1			M1		Integ			t) or $(t, 1)$	
	(iii) $\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2}\right]_{t}^{1}$			1111		meg	Integrate $f(x)$ with limits $(-1, t)$ or $(t, 1)$ [recoverable if t used later]					
					B1		Correct indefinite integral			i iuter j		
	$\frac{1}{2}(1-t^3) = 0.2 \text{ or } \frac{1}{2}(t^3+1) = 0.8$					M1			Equate to 0.2, or 0.8 if $[-1, t]$ used			
			M1			e cubic equat						
		$t^3 = 0.6$ t = 0.8434							Answer, in range [0.843, 0.844]			
8	(i) $64.2 - 63 = 1.644$					M1dep			Standardise 64.2 with $\sqrt{n}$			
		$\sqrt{12.25/23}$				A1		<i>z</i> = 1.644 or 1.645, must be +				
		P(z > 1.644)				dep M1		Find $\Phi(z)$ , answer < 0.5 Answer, a.r.t. 0.05 or 5.0%				
		= 0.05				A1	4					
	(ii)	(a) 63	⊥1 6/15	$5 \times \frac{3.5}{\sqrt{50}}$		M1		63 +	$63 + 3.5 \times k / \sqrt{50}$ , k from $\Phi^{-1}$ , not –			
		05	1.042	$\sqrt{50}$		B1		k = 1	k = 1.645 (allow 1.64, 1.65)			
		$\geq 6$	3.81			A1	3	Answ	Answer, a.r.t. 63.8, allow >, ≥, =, c.w.o.			
		(b) P(<	63.8	$\mu = 65$ )		M1		Use of correct meaning of Type II				
		63.	8-65	= -2.39	56	M1		Stand	Standardise their c with $\sqrt{50}$			
	$\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$				A1		$z = (\pm$	$z = (\pm) 2.40$ [or $-2.424$ or $-2.404$ etc]				
		0.0				A1	4	Answ	ver, a.r.t. 0.0	08 [eg, 0.00 [*]	767]	
	(iii)				B2√	2	This	answer: B2.	"B because	sample bigger": B1.		
				e Type I e						Partial answer: B1]		
9	(a)	np > 5 and $n$				M2		Use e	either $nq > 5$			
		0.75n > 5 is	releva	nt				[SR: If M0, use $np > 5$ , c				
		n > 20				A1	3	Final				
	(b)	(i) 70.5 –	•			M1			Standardise once, and equate to $\Phi^{-1}$ , $\pm cc$			
		$\mu - 46.5 = 2.25\sigma$ Solve simultaneously $\mu = 60$ $\sigma = 6$ (ii) $np = 60, npq = 36$ q = 36/60 = 0.6				A1				ct, cc correct		
						B1		Both 1.75 and 2.25 Correct solution method to get one variable				
						M1 A1√					t one variable	
						A1	6		t. 60.0 or $\pm$		low). Allhoth]	
							U	[0, a.r]		M1A0B1M	elow): A1 both]	
						M1dep		nn =	60  and  npq =			
						depM1		-	e to get q or j			
		p = 0.4				A1√			.4 $\sqrt{\text{on wrote}}$			
		n = 15				A1√	4		$50 \sqrt{\text{on wrote}}$			
L						•		<i>a</i>		0		
			70.5	16 5	σ	μ 60		$\frac{q}{0.6}$	$p(\pm 0.01)$	<i>n</i>		
			70.5	46.5	6	60.062		0.6	0.4	150		
			71	46	6.25	60.062 5	0	6504	0.3496	171.8		
			/ 1	υ	0.23	60.562	0.	0004	0.5490	1/1.0		
			71.5	46.5	6.25	5	0	6450	0.3550	170.6		
						59.562						
			70.5	45.5	6.25	5	0.	6558	0.3442	173.0		
					6.5	60.125		7027	0.2973	202.2		
	70   46   6				59.5		6050	0.3950	150.6			

# Mark Scheme 4734 June 2007

1	$\int_0^1 a \mathrm{d}x \qquad + \qquad \int_1^\infty \frac{a}{x^2} \mathrm{d}x = 1$	M1		For sum of integrals =1
	$\left[ax\right]_{0}^{1}$ + $\left[-\frac{a}{x^{3}}\right]_{1}^{\infty} = 1$	A1		For second integral.
	$\begin{array}{c} a \\ a \\ a = \frac{1}{2} \end{array} + a = 1 \\ a = \frac{1}{2} \end{array}$	A1 A1	4	For second <i>a</i> Or from F(x) M1A1 then $F(\infty)=1$ M1, $a=\frac{1}{2}$ A1
2	(i) $\overline{X}_I \square N(5, \frac{0.7^2}{20})$	B1		If no parameters allow in (ii)
	$\overline{X}_E \square \mathrm{N}(4.5, \frac{0.5^2}{25})$	B1	2	If 0.7/20, 0.5/25 then B1 for both, with means in (ii)
	(ii) Use $\overline{X}_I - \overline{X}_E \square N(0.5, \sigma^2)$ $\sigma^2 = 0.49/20 + 0.25/25$ $1 - \Phi([1-0.5]/\sigma)$ = 0.0036  or  0.0035	M1A1 B1 M1 A1	5	OR $\overline{X}_I - \overline{X}_E - 1 \square$ N(-0.5, $\sigma^2$ ) cao RH probability implied. If 0.7, 0.5 in $\sigma^2$ , M1A1B0M1A1 for 0.165
3	Assumes differences form a random sample from a normal distribution. $H_0: \mu = 0, H_1: \mu > 0$ $\overline{x} = 17.2/12$ ; $s^2 = 10.155$ AEF	B1 B1B1	B1	Other letters if defined; or in words Or (12/11)(136.36/12-(17.2/12) ² )aef
	EITHER: $t = \frac{\overline{x}}{\sqrt{s^2/12}}$ (+ or -)	M1		With 12 or 9.309/11
	=1.558 1.363 seen 1.558 > 1.363, so reject H ₀ and accept that there that the readings from the aneroid	A1 B1		Must be positive. Accept 1.56 Allow CV of 1.372 or 1.356 evidence Explicit comparison of CV(not -
	device overestimate blood pressure on average	B1√		with +) and conclusion in context.
	<b>OR:</b> For critical region or critical value of $\overline{x}$ 1.363 $\sqrt{(s^2/12)}$ Giving 1.25(3) Compare 1.43(3) with 1.25(3)	M1B1 A1		B1 for correct <i>t</i>
	Conclusion in context	B1√	8	

4	(i)			Proper				
			Р	F				
		Р	31	11	42	B1		Two correct
	Trial							
		F	5	13	18	B1		Others correct
			36	24	60		2	
	(ii) (H ₀ :	Tri	al resu	lts and Pro	oper results			
	are inde	pen	dent.)					
	E-value:	s:	25.2	16.8		M1		One correct. Ft marginals in (i)
		1	10.8	7.2		A1		All correct
	$\chi^2 = 5.3^2$	² (25	.2 ⁻¹ +10	).8 ⁻¹ +16.8	$(-1+7.2^{-1})$	M1		Allow two errors
	<i>7</i> 0				,	A1		With Yates' correction
	= 9.28	89				A1		art 9.29
				with 7.87		M1		Or 7.88
				that result	s are not			
	indepen	dent	t.			A1 $$	7	Ft $\chi^2_{\text{calc}}$ .
;	(i) $e^{-\mu} =$	0.44	5			M1		
,	$\mu_G = 0.$			0 AG		Al	2	0.799 or 0.798 or better seen
	(ii) $\mu_U \approx$	: 1.8				B1		
	Total, T	'~ P	0(2.6)			M1		May be implied by answer 0.264
	P(>3) =	0.2	64			A1	3	From table or otherwise
	(iii) e ^{-2.6}	$2.6^{6}$	/6!			B1		Or 0.318 from table
	e ^{-5.2}	5.2 ⁴	/4!			B1		
	Multiply	y tw	o prob	abilities		M1		
					3 or 0.0054	A1	4	

June 2007

6	(i) $\hat{p} = 62/200 = 0.31$	B1		aef
	Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha}(1-\hat{p}_{\alpha})}{200}}$	M1		With 200 or 199
	z=1.96	B1		Seen
	Correct variance estimate	A1√		ft $\hat{p}$
	(0.2459,0.3741)	A1	5	art (0.246,0.374)
	(ii)EITHER: Sample proportion has an approximate normal distribution			
	OR: Variance is an estimate	B1	1	Not $\hat{p}$ is an estimate, unless
				variance mentioned
	(iii) $H_0: p_\alpha = p_\beta , H_1: p_\alpha \neq p_\beta$			
	$\hat{p} = (62+35)/(200+150)$	B1		aef
	EITHER: $z = (\pm) \frac{62/200 - 35/150}{\sqrt{\hat{p}\hat{q}(200^{-1} + 150^{-1})}}$	M1		$s^2$ with, $\hat{p}$ , 200, 150 (or 199, 149)
		<b>B</b> 1√		Evidence of correct variance estimate. Ft $\hat{p}$
	=1.586	A1		Rounding to 1.58 or 1.59
	(-1.96 $\leq$ ) 1.586 $\leq$ 1.96 Do not reject H ₀ - there is insufficient	M1		Correct comparison with $\pm 1.96$
	evidence of a difference in proportions.	A1		SR: If variance $p_1q_1/n_1+p_2q_2/n_2$ used then: B0M1B0A1(for z=1.61 or 1.62)M1A1 Max 4/6.
	OR: $p_{s\alpha} - p_{s\beta} = zs$	M1		
	$s = \sqrt{(0.277 \times 0.723(200^{-1} + 150^{-1}))}$	В1√		Ft $\hat{p}$
	CV of $p_{sa} - p_{s\beta} = 0.0948$ or 0.095	A1		1
	Compare $p_{sa} - p_{s\beta} = 0.0767$ with their 0.0948 Do not reject H ₀ and accept that there is insufficient evidence of a difference in	M1		
	proportions	A1		Conditional on z=1.96
			6	

### 4734

June 2007

7	(i) $G(y) = P(Y \le y)$	M1		May be implied by following line
	= $P(X^2 \ge 1/y)$ [or $P(X > 1/\sqrt{y})$ ]	A1		Accept strict inequalities
	$= 1 - F(1/\sqrt{y})$	A1		
	$\begin{cases} 0 & y \le 0, \\ 2 & y \le 0, \end{cases}$			
	$=\begin{cases} y^2 & 0 \le y \le 1, \\ (1 & y > 1.) \end{cases}$			
	$(1 \qquad y > 1.)$			
		A1	4	Or $F(x)=P(X \le x) = P(Y \ge 1/x^2)$ M1
				$=1 - P(Y < 1/x^2)$ A1
				=1-G(y);etc A1 A1
	(ii) Differentiate their G(y)	M1		
	to obtain $g(y) = 2y$ for $0 < y \le 1$ AG		A1	2 Only from G correctly
btaine	ed			
	(iii) $\int_0^1 2y (\sqrt[3]{y} dy)$	M1		Unsimplified, but with limits
	$(\Pi) \int_0^{2y} \sqrt{y} dy$	1011		onsimplified, out with minus
	$=[6y^{7/3}/7]$	B1		OR: Find f(x), $\int_{1}^{\infty} x^{-2/3} f(x) dx$ M1
	$= \frac{6}{7}$	A1	3	= $[4x^{-14/3}/(14/3)]; {}^{6}/_{7}$ B1A1 OR: Find H(z), Z= Y ^{1/3}
				OR: Find H(z), $Z = Y^{1/3}$
	(i) $P(20 \le y < 25) = \Phi(0) - \Phi(-5/\sqrt{20})$	M1		
	$\begin{array}{l} \text{(1) } P(20 \le y < 25) = \Phi(0) = \Phi(-5) \setminus (20) \end{array} \\ \text{Multiply by 50} \end{array}$	M1 A1		
	to give 18.41 AG	A1		
	18.41 for $25 \le y \le 30$ and 6.59 for $y \le 20$ , $y \ge 30$	A1	4	
	(ii) H ₀ : N(25,20) fits data	B1		OR <i>Y</i> ~ N(25,20)
	$\chi^2 = 3.59^2/6.59 + 8.59^2/18.41 + 6.41^2/18.41 + 1.41^2/6.59$			
	+1.41 ⁻ /6.59 =8.497	M1√ A1		ft values from (i) art 8.5
	-0.477	AI		art 8.5
	8.497 > 7.815	M1		
	Accept that N(25,20) is not a good fit	A1	5	
	(iii) Use $24.91 \pm z\sqrt{(20/50)}$		M1	
	$\frac{(11)}{2} = 2.326$	B1	1111	with (20/30)
	(23.44,26.38)	A1	3	art (23.4,26.4) Must be interval
	(iv) No- Sample size large enough to apply CLT	B1		Refer to large sample size
	Sample mean will be (approximately) normally			-
	distributed whatever the distribution of Y	B1	2	Refer to normality of sample mean

# Mark Scheme 4735 June 2007

### **Statistics 4**

1	(i) Use $P(A' \cap B') = 1 - P(A \cup B)$	M1		$Or \ c = 1 - P(A \ \cup \ B)$
	Use $P(A \cap B) = P(A) + P(B) - P(A \cup B)$	M1		
	= c - 0.1	A1	3	
	0.1			
				~
	(ii) $P(B   A) = (c - 0.1)/0.3$	B1√		Shown clearly
	Use $0 \le p \le 1$	M1		
	to obtain $0.1 \le c \le 0.4$ AG	A1	3	
2	$H_0: m_n = m_s, H_1: m_n \neq m_s$	B1		Medians; both hypotheses
	Use Wilcoxon rank sum test			'Population medians' if words
	59 64 68 77 80 85 88 90 98	M1		Rank and identify
	N N N S N S N S S	A1		M0 if normal approx. used
	$R_m = 4 + 6 + 8 + 9 = 27$	B1		11
	40 - 27 = 13			
	W = 13	B1		
	Compare correctly with correct CV, !2	M1		Quote critical region or state
	Do not reject $H_0$ . There is no evidence of a			that 13 > 12. M0 if W=27
	difference in the median pulse rates of the			
	two populations.	A1	7	Conclusion in context.
3	(i) Use marginal distributions to obtain	M1		
	E(X) = -0.4,  E(Y) = 1.5	A1A	.1	
	E(XY) = -0.24 + 0.04 - 0.52 + 0.12	M1		
	Cov(X,Y) = -0.6 + 0.6 = 0 AG	A1	5	
1	$(::)\mathbf{D}(\mathbf{V}_{-1}   \mathbf{V}_{-2}) = 0.26/0.5 = 0.52$			
	(ii) $P(X=-1   Y=2) = 0.26/0.5 = 0.52$ P(X=0   Y=2) = 0.18/0.5 = 0.26	M1		Correct method for any one
	P(X=0   Y=2) = 0.18/0.5 = 0.36 P(X=1   Y=2) = 0.12	A 1	2	All correct
	P(X=1   Y=2) = 0.12	A1	2	SR: B1 if no method indicated
				SK. DI II no metnoù indicateu

4 (i) $H_0: m = 2.70$ , $H_1: m > 2.7$ Subtract 2.70 from each value and count the number of positive signs Obtain 13 Use $B(20, 1/2)$ to obtain $P(X \ge 13) = 0.1316 (0.132)$ Compare correctly with 0.05 Do not reject $H_0$ . Conclude that there is insufficient evidence to claim that median level of impurity is greater than 2.70	B1 M1 A1 M1 A1 M1 A1 A1 7	In terms of medians Allow just 'medians' here For finding tail probability Or CR: $X \ge 15$ M1A1 Or: N(10, 5), p=0.132
(ii)Wilcoxon signed rank test Advantage: More powerful (uses more formation) Disadvantage: This test requires a symmetric population distribution, not required for sign test	B1 B1 B1 <b>3</b>	Smaller P(Type II) Not 'more time taken'
5 (i) $\int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} dx = 1$ , result follows	B1 1	
(ii) $M_{X}(t) = \int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} e^{xt} dx$ = $\int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x(1 - t)} dx$	-MI	
x = u/(1-t), dx = du/(1-t)  and limits unchanged = $\int_{0}^{\infty} \frac{1}{(\alpha-1)!} \frac{u^{\alpha-1}}{(1-t)^{\alpha-1}} \frac{e^{-u}}{1-t} du$	M1 A1	Attempt to differentiate
$=\frac{1}{(\alpha-1)!(1-t)^{\alpha}}\int_{0}^{\infty}u^{\alpha-1}e^{-u}du$ $=(1-t)^{-\alpha} AG$	A1 A1 <b>5</b>	With evidence
(iii) EITHER: M'(t)= $\alpha(1-t)^{-\alpha-1}$ M''(t)= $\alpha(\alpha + 1)(1-t)^{-\alpha-2}$ Substitute t=0 E(X) = $\alpha$ Var(X) = $\alpha(\alpha + 1) - \alpha^2$ = $\alpha$	B1 B1 M1 A1 M1	AEF
$\begin{aligned} -\alpha \\ OR: (1-t)^{-\alpha} &= 1 + \alpha t + \frac{1}{2} \alpha(\alpha+1)t^2 + \dots \\ E(X) &= \alpha \\ Var(X) &= E(X^2) - [E(X)]^2 \\ &= \alpha(\alpha+1) - \alpha^2 ; \alpha \end{aligned}$	A1 M1A1 B1 M1 A1A1 <b>6</b>	M0 if t involved

6 (i) $q+pt$	B1 1	Accept $qt^0 + pt^1$
(ii) $(q+pt)^n (= G_S(t))$ Binomial	B1 B1 <b>2</b>	
(iii) $E(S)=G'(1) = np(q+p)$ = $np$ $Var(S) = G''(1)+G'(1) - [G'(1)]^2$ = $n(n-1)p^2(p+q) + np - n^2p^2$ = $npq$	M1A1 A1 M1 A1 A1 <b>6</b>	AEF, properly obtained
(iv) $(\frac{1}{2} + \frac{1}{2}t)^{10}e^{-(1-t)}$ Find coefficient of $t^2$ $(1/2^{10})(1 + 10t + \frac{1}{2} \times 10 \times 9t^2)$ $e^{-1}(1 + t + \frac{1}{2}t^2)$ Required coefficient $= e^{-1}2^{-10}(1/2 + 10 + 45)$ = 0.0199	M1 M1 A1 A1 M1 A1 <b>6</b>	Seen May be implied OR: $P(Y=0)P(Z=2)+M1$ , Z is Po(1) M1 Ans:A1A1A1;A1 Not from $e^{-(1-t)}=1-(1-t)+(1-t)^2/2$ No more than one term missing
7 (i) $E(T_1) = 2E(\overline{X}) = 2 \times \frac{1}{2}\theta = \theta$ (So $T_1$ is an unbiased estimator of $\theta$ )	M1A1 2	SR: B1 if $\overline{X} = \int_0^{\theta} \frac{x}{\theta} d\theta$
(ii) $E(U) = \int_0^\theta \frac{nu^n}{\theta^n} du ; \left[\frac{nu^{n+1}}{\theta^n(n+1)}\right]; \frac{n\theta}{n+1}$	M1A1A1	
$E(U^{2}) = \int_{0}^{\theta} \frac{nu^{n+1}}{\theta^{n}} du \qquad ; \qquad \frac{n}{n+2}\theta^{2}$ $Var(U) = E(U^{2}) - [E(U)]^{2}$ $= \frac{n\theta^{2}}{(n+1)^{2}(n+2)} AG$	M1A1 A1 6	
(iii) $\operatorname{Var}(T_2) = \frac{\theta^2}{[n(n+2)]}$ $\operatorname{Var}(T_1) = 4\operatorname{Var}(X)/n ; \frac{\theta^2}{3n}$ $\operatorname{Var}(T_2)/\operatorname{Var}(T_1)$ 3/(n+2) < 1  for  n > 1 So $T_2$ is more efficient than $T_1$	B1 M1A1 M1 M1A1 A1 7	For comparison of var. $T_1$ , $T_2$ Idea used.

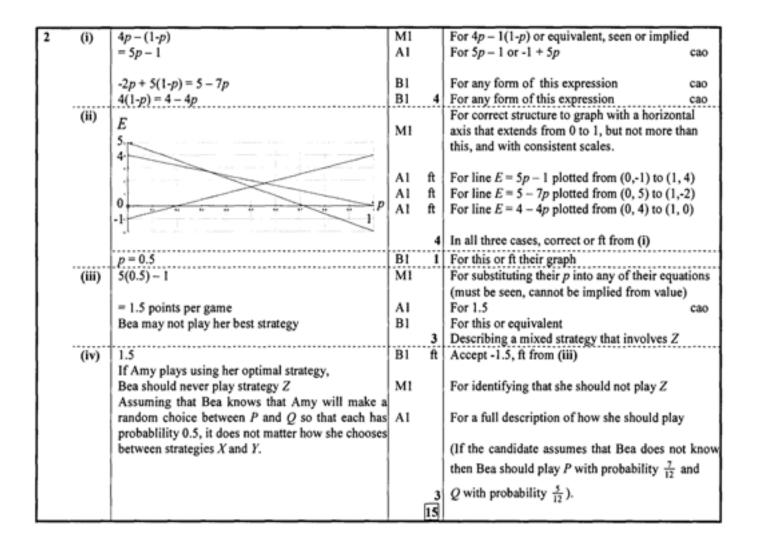
# Mark Scheme 4736 June 2007

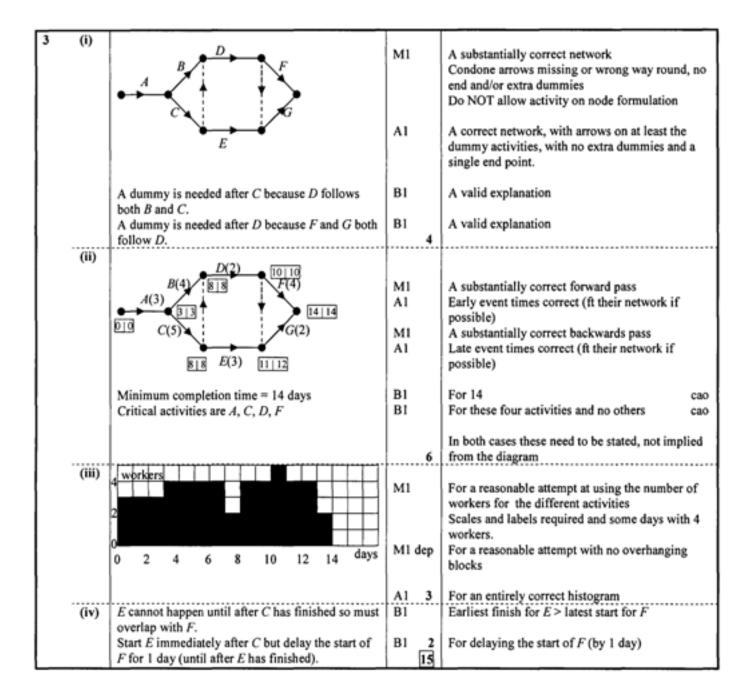
	so	OLUTIONS 4736 I	01		June 2007 FINAL
1	(i)	Example: $N - P - Q - T - S - R - N$	B1		Any valid cycle (closed and does not repeat
		or: $P - Q - S - P$	BI	<u>¦</u> -	vertices, need not be a Hamiltonian cycle)
1	(ii)	It passes through Y twice	BI		Or, it includes a cycle (accept 'loop')
1	(iii)	A: neither	B1	··· <b>!</b> ·	If graphs are not specified, assume A is first
1	(iv)	B: semi-Eulerian	B1	2	It graphs are not specified, assume A is first
1		A: 2	BI	··	If graphs are not specified, assume A is first
1	(v)	A: 2 B: 1	B1	2	
1	(10)	There are 4 odd nodes (N, P, S and Z)	MI		
1	(vi)	To connect these we must add 2 arcs	AI	ดิ	For 2
L		To connect these we must add 2 arcs	A	<u>P</u>	1012
2	.0	d+f+g=120	B1	1	For this equality. Condone an inequality
1	(ii)	"(Area of) grass is not more than 4 times (area of)	B1	-	Identifying the constraint in words (not just 'grass
1		decking"		1.	is less than or equal to 4 times decking' though)
1	<u>(iii)</u>	. <i>a</i> <u>&gt;</u> <i>j</i>	B1	1	
1	(iv)	$g \ge 40$	B1		Do not accept $g > 40$
1	1 1	$\min d = 10$	B1		$d \ge 10$
1		$\min f = 20$	B1		<i>f</i> ≧20
1	(v)	5g + 10d + 20f	B1		Or any positive multiple of this
1	4.5	or $g + 2d + 4f$	+	<b>I</b>	Para and the standard of a standard and
1	(vi)	Minimise $g + 2d + 4f$ Subject to $d + f + g = 120$	M1		For a reasonable attempt at setting up the
1		Subject to $d + f + g = 120$	D1		minimisation problem using their expressions
1		g - 4d + s = 0 d - f + t = 0	B1		For dealing with this slack variable correctly
1		$a \ge 40$ ,	AI	3	(variables on LHS and constant on RHS) For a completely correct formulation (accept d
1		and $d \ge 10, f \ge 20, s \ge 0, t \ge 0$	1.	10	and $f \ge 0$ , or their min values for $d, f$ )
L		and u = 10, y = 20, 3 = 0, 1 = 0		μų	and $j \ge 0$ , or their finit values for $a_{i,j}$
3	(i)	8 6 9 7 5 Comps Swaps		_	Bubble sort or decreasing order loses first 4 marks
1	1 1	After 1st pass: 6 8 9 7 5 1 1	MI		1st pass correct
1		After 2nd pass: 6 8 9 7 5 1 0	M1		2nd pass correct, follow through from 1st pass
I		After 3rd pass: 6 7 8 9 5 3 2	M1		3rd pass correct, follow through from 2nd pass
		After 4th pass: 5 6 7 8 9 4 4	A1		4th pass correct
		Comparisons must be 1, 2, 3 or 4 with total $\leq 10$	BI		Counting comparisons for at least three passes
		Swaps must be 0, 1, 2, 3 or 4 and no more than	BI		Counting swaps for at least three passes
1		corresponding number of comparisons	1	6	
	(ii)	Step 1 A = 8 6 9 7 5	<u> </u>	-	
1		Step 2 $A = 6 9 7 5 X = 8$			
1		Step 3 A = 9 7 5 B = 6	M1		For identifying that $6 \rightarrow B$ or the sublist $\{6\}$
1		Step 4 A = 7 5 C = 9	M1		For identifying that $9 \rightarrow C$ or the sublist $\{9\}$
1		Step 4 A = 5 B = 6 7	MI		For identifying that $7 \rightarrow B$
		Step 4 A is empty B = 6 7 5	M1		For identifying that $5 \rightarrow B$
1		Step 6 N = 3			to recentlying that 5 - 7 D
1		Step 7 A = 6 7 5 8 9	AI	5	For the final A list or the display correct
		Step 8 Display 6 7 5 8 9		11	

#### **Mark Scheme**

	(7)								_		
1	(i)	P	x	v	\$	1	и		B1		For correct use of three slack variable columns
		1	-3	5	0	0	0	0	1.		Tor correct use of three stack variable columns
		0	1	5	1	0	0	12	BI		For ± (-3 5) in objective row
		0	1	-5	0	1	0	10			
1 1		0	3	10	0	0	1	45	B1		For 1 5 12, 1-5 10 and 3 10 45 in constraint
										3	rows
	(ii)	Pivot o	on seco	nd 1 in	x colun	nn			B1		For correct pivot choice (cao)
		x colur	mn has	a negat	ive ent	ry in ob	jective	row			For 'negative in top row for x', or equivalent,
		12 ÷ 1	= 12, 1	0 ÷ 1 =	10,45	+ 3 = 1	15		B1		and a correct explanation of choice of row 'least
		Least r	non-neg	gative r	atio is 1	l0 so pi	vot on t	the	1		ratio 10 + 1' (ft their pivot column)
		second	11							2	
1 1	(iii)								1		ft their tableau if possible for method marks
1		P	x	<u>y</u>	z	\$	1				
		1	0	-10	0	3	0	30	M1		For correct method evident for objective row
		0	0	10	1	-1	0	2	M1 M1		For a correct method evident for pivot row For a correct method evident for other rows
1 1		0	1	-5	0	1	0	10	Al		For correct tableau CAO
1 1		0	0	25	0	-3	1	15	1		For correct tableau CAO
1 1											
1 1		x = 10	v = 0						B1		For correct values from their tableau
		P = 30							BI	6	For correct value from their tableau
	(iv)		(0.2) =	12	or	s = 0			1		
1 1	,	11 - 5(0.2) = 10 or $t = 0$									
1 1	3(11) + 10(0.2) = 35 or $u = 10so all the constraints are satisfied$							B1		For showing (not just stating) that constraints are	
1										satisfied	
		P = 3(	11) - 5	(0.2) =	32				B1	2	For calculating 32, or equivalent (eg 3x has
		which	is bigg	er than	30 from	n (iii)				13	increased by 3 but -5y has only decreased by 1)

5	(i)				ANSWERED ON INSERT
		A B 9 125 130 125	мі		For correct initial temporary labels at F, G, I
			М1		For correctly updating $F$ and label at $H$
		$\begin{bmatrix} \mathbf{s} & 100 \\ 100 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{c} & 90 \\ 90 & 90 \end{bmatrix} = \begin{bmatrix} 7 & \mathbf{9s} \\ \mathbf{9s} \\ \mathbf{9s} \end{bmatrix}$	A1		For all temporary labels correct (including A) (allow extra 100 at C, 105 at D, 75 at H only)
		4 70 2 25 3 65 5 75	<b>B</b> 1		For order of becoming permanent correct
		90_70 25 65 75	B1		For all permanent labels correct (A need not have a permanent label)
		Shortest path from $J$ to $B$ : $J \ G \ H \ E \ B$ Length of path: 125 metres	B1 B1	7	For correct route (condone omission of J or B) For 125
	(ii)	Odd nodes: B C E J	B1		For identifying or using B C E J or implied
		$\begin{array}{cccccc} BC = 60 & BE = 35 & BJ = 125 \\ EJ = \underline{90} & CJ = \underline{95} & CE = \underline{70} \\ 150 & 130 & 195 \end{array}$	М1		For any three of these weights correct, or implied or ft from their (i)
		Repeat BE and CJ (or BE, JI, IC)	AI		For <u>identifying</u> the pairing <i>BE</i> , <i>CJ</i> to repeat or 130 (not ft)
		130 + 765	MI		For 765 + their 130 (a valid pairs total)
	(iii)	Shortest route: 895 metres A 40 B	<u>A1</u>	5	For 895 (cao)
	()	30 35 60	В1		For graph structure correct
		$\begin{array}{c} D \\ 30 \\ F \\ 45 \\ G \\ 40 \\ H \\ 25 \\ H \\ 25 \\ H \\ 25 \\ H \\ 20 \\ H \\ 25 \\ H \\ 2$	М1		For a reasonable attempt at arc weights (at least 9 correct, including the three given)
		90 25 75	AI		For all arc weights correct
		<i>,</i>		4	
		Travelling salesperson problem	B1	16	For identifying TSP by name


775			
(i)		1	ANSWERED ON INSERT
	1 5 2 4 3 6		
	$A \mid B \mid C \mid D \mid E \mid F \mid$		
	4 - 6 3	M1	For choosing row $C$ in column $A$
			-
		M1 dep	For choosing more than one entry from column C
	D - 6 8 - 3 8		
	E 4 3	AI	For correct entries chosen
	F - 14 10 8		
	Order: A C E D B F	B1	For correct order, listed or marked on arrows or
			table, or arcs listed AC CE ED CB DF
	Minimum spanning tree:		
		BI	For tree (correct or follow through from table, provided solution forms a spanning tree)
	A C E F		
			Frank (and fille and fille
	Total weight: 23 miles		For 23 (or follow through from table or diagram, provided solution forms a spanning tree)
(ii)	MST for reduced network = 18		For their 18 seen or implied
· /	Two shortest arcs from $B = 5 + 6 = 11$	MI	For 11 seen or implied
	Lower bound = 29 miles	A1 3	For 29 (cao)
(iii )	F-D-E-C-A-B-F	MI	For F-D-E-C-A-B
` '		Al	For correct tour
	8+3+4+3+6+14	M1 4	For a substantially correct attempt at sum
	= 38 miles	A1 13	For 38 (cao)
		A - 6 $3$ $B$ $6 - 5$ $6 - 14$ $C$ $3$ $5 - 8$ $4$ $10$ $D - 6$ $8 - 3$ $8$ $E 4$ $3$ $ F - 14$ $10$ $8$ Order: $A C E D B F$ Minimum spanning tree: $M$ $A$ $C$ $E$ $A$ $C$ $E$ $F$ Total weight: 23 miles $C$ $E$ $F$ Total weight: 23 miles $MST$ for reduced network = 18 $Two$ shortest arcs from $B = 5 + 6 = 11$ Lower bound = 29 miles $F - D - E - C - A - B - F$ $8 + 3 + 4 + 3 + 6 + 14$	A - 6 $3$ $B$ $M$


# Mark Scheme 4737 June 2007

#### Mark Scheme

June 2007

	so	OLUT	IONS		4737	I	02	June 2007	FINAL
1	(1)	A B C D	house 1 500 300 500 0	house 2 400 200 300 0	house 3 700 400 750 0	house 4 600 350 680 0	B1 B1 2	For copying the table, with row headings (accept consistent sca For dummy row (Daniel) with a	lings)
	(ii)		ice rows	0	0		B1 2	For durinity row (Danier) with a	in equal values
				100 0 100 0 200 0	300 200 450	200 150 380	мі	For a substantially correct atten rows and columns	
				0 0 already redu ng two lines	0 ced	0	A1 2	For correct reduced cost matrix Do not treat as MR	(ft scalings)
				100 100 200	300 200 450	200 150 380	мі	For covering zeros using minim lines, clearly seen or implied fr	
		Augr	ment by				M1 dep	For a single augmentation by 1 (accept either way of augmention	
				0 0 0 0 100 0 0 10	200 100 350 0 0	100 50 280 0	Al ft	For a correct augmented matrix	(ft their matrix)
	(11)	Cros	s out usin	ing three line: ↓ ↓ 0 00 0	s 200 100 350	100 50 280	MI	For covering zeros using minin lines a second time, clearly see augmenting	
		Augr		50 0 0 100 0 50 15	150 50 300 0 0	50 0 230 0	Ml dep	For a single augmentation by 50 (accept either way of augmenting) For a correct augmented matrix	ng by 50)
		Com	plete ma						
				0 0 0 0 100 0 50 15	150 50 300 0 0	50 230 0	BI	For a complete matching achiev from an attempt at reducing or a matrix, not just implied from a	augmenting a
	(iii)	Clear	htenupp n4U	should cle should cle should cle	an house 4	4	B1 2	For A = 1, B = 4, C = 2 (may al	so list D = 3) cao
		Cost	= £1150				B1 13	For 1150	cao





4	(i)	stage	state	action	working	minimax		ANSWERED ON INSERT		
			0	0	4	4	1	Values only credited when seen in table		
		1	1	0	3	3				
1		1	2	0	2	2	1			
				0	max(6,4) = 6		7			
l	1	l	0	1	max(2,3) = 3	3				
		1		2	max(3,2) = 3					
		1		0	max(2,4) = 4	4	мі	For calculating the maxima as 4, 4, 5		
		2	1	1	max(4,3) = 4		A1 2	For calculating the minimax as 4		
		1		2	max(5,2) = 5			For completing 4, 2, 2 in the brockets		
		1		0	max(2,4) = 4		MI	For completing 4, 3, 2 in the brackets For calculating the maxima as 4, 3, 4 (metho		
1		1	2	1	max(3,3) = 3	3	A1 3	For calculating the minimax as 3 cao		
				2	max(4,2) = 4			For using their minimum uphen from store 2		
			0	0	max(5,3) = 5		MI	For using their minimax values from stage 2 For calculating the maxima for their values		
		3		1	max(5,4) = 5	]	A1	For calculating the maxima as 5, 5, 3 cao		
				2	max(2,3) = 3	3	A1 4	For calculating the minimax as 3 cao		
	(ii)						MI	For the value from their tabulation		
		3					A1 M1 dep	For 3 (irrespective of their tabulation) cao For reading route from their tabulation		
		(0; 0) - (	1; 1) - (2	2; 2) - (3; (	0) (or in rev	erse)	Al 4	For this route (irrespective of their tabulation) cao		
	(iii) $(0; 0) - (1; 1) - (2; 2) - (3; 0)$ (or in reverse) (iii) $(2; 0) - 6 - (1; 0)$					Bl	For the graph structure correct			
		(3; 0)	(2)	$\overset{\sim}{\longrightarrow}$	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<b>(</b> 0; 0)	Ml	For a substantially correct attempt at the weights (no more than two definite errors or omissions)		
			(2; 2)	<i>¥</i> ,	2(1; 2)		A1 3 16	For weights unambiguously correct		

5	(i)				ANSWERED ON INSERT
1		S - E - I - T	B1	1	For this route (not in reverse) cao
1	(ii)	6 litres per second	B1		For 6
1		From A to G	Bl	2	For direction AG
1	(iii)	6+2+4+0+8	MI		For a substantially correct attempt with DF = 0
			MI		For dealing with $EI (= 8 \text{ or } = 2 + 6)$
1		= 20 litres per second	Al	3	For 20 cao
1					Method marks may be implied from answer
1	(iv)	eg flow 5 along $S - A - G - T$	MI		For describing a valid flow augmenting route
1		and 2 along $S - C - F - H - G - T$	A1	2	For correctly flowing 7 from S to T
1		2			
		Diagram correctly augmented	MI		For a reasonable attempt at augmenting a flow
1		0 1 0	MI		For correctly augmenting a flow
1			A1	3	For a correct augmentation by a total of 7
1					Ŭ Î
1		Cut {S, A, B, C, D, E, F, G, H, I}, {T}	B1		For identifying cut or arcs GT and IT
1					
1		This cut has a value of 13 and the flow already	B1		For explaining how this shows that the flow is a
1		found is 6 + 7 = 13 litres per second.			maximum,
1		Or			but NOT just stating max flow = min cut
1		This is the maximum flow since the arcs GT and		2	
		IT are both saturated, so no more can flow into T.		13	

## Advanced GCE Mathematics (3892 – 2, 7890 - 2) June 2007 Assessment Series

### **Unit Threshold Marks**

	Unit	Maximum Mark	а	b	С	d	е	u
4721	Raw	72	60	52	44	36	29	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	60	53	46	39	33	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	44	37	30	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	43	36	29	22	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	42	36	30	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0

4734	Raw	72	56	49	42	36	30	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	60	51	43	35	27	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	62	55	48	42	36	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

### **Specification Aggregation Results**

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	Е	U
3890/3891/3892	300	240	210	180	150	120	0
7890/7891/7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	31.2	47.9	62.0	74.4	84.9	100	13873
3891	20.0	20.0	20.0	20.0	20.0	100	10
3892	58.5	75.6	87.9	94.7	97.5	100	1384
7890	45.3	66.9	82.2	92.4	97.7	100	9663
7891	0	0	0	100	100	100	1
7892	58.2	78.1	89.1	96.0	98.8	100	1487

For a description of how UMS marks are calculated see; <a href="http://www.ocr.org.uk/exam">http://www.ocr.org.uk/exam</a> system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### (General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

