

Chemistry B (Salters)

Advanced Subsidiary GCE

Unit F332: Chemistry of Natural Resources

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/ alternative and acceptable answers for the same marking point	
 ✓ separates marking points 	
not	answers which are not worthy of credit and which will CON a correct answer
ignore	statements which are irrelevant and will NOT 'CON' a correct answer
allow	answers that can be accepted
()	words which are not essential to gain credit
	underlined words must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording (replaces the old 'or words to that effect')
ora	or reverse argument

Annotations used in scoris:

Annotation	Meaning
✓	correct response
×	incorrect response
bod	benefit of the doubt
nbod	benefit of the doubt <u>not</u> given
ECF	error carried forward
٨	information omitted
I	Ignore
R	Reject

F332

Q	Question		Answer	Marks	Guidance
1	(a)	(i)	$H \xrightarrow{x} S \xrightarrow{x} H$ All correct for one mark \checkmark	1	 Any two different symbols can be used to represent the electrons. Candidate does not have to draw circles for electron shells. It MUST be clear that a pair of electrons is being shared between the S and each H. IGNORE bonds shown as lines.
1	(a)	(ii)	Bent / v–shaped / non-linear ✓	4	 DO NOT ALLOW ecf here for an incorrect diagram in (i) showing no lone pairs. ALLOW first marking point for correct diagram IGNORE tetrahedral.
			Four pairs of electrons OR 2 bonding pairs and 2 lone pairs (around S) \checkmark		ALLOW 'areas/groups/regions of electron density'
			electron (pairs): repel to get as far apart as possible OR repel as much as possible OR position themselves so they minimise repulsion OR repel to produce a tetrahedral arrangement ✓		Must have both repel and distance idea for the mark. NOT just 'lone pairs repel' / 'atoms repel' / 'bonds repel'.
			109° ✓		ALLOW bond angle in the range: 104 – 110° Mark separately. No ecf from earlier marking points.

Question		on	Answer	Marks	Guidance
1	(b)		The H–S bonds are (slightly) polar OR S and H have different electronegativities OR H is less electronegative / ∂ + OR S is more electronegative / ∂ – \checkmark	2	NOT full charges. Can be from a labelled diagram.
			(The molecule is) polar because: the charges or dipoles do not balance		Must have both polar and a reason.
			OR centres of negative and positive charges do not coincide OR electrons/charges are not evenly distributed OR has a positive and a negative side $AW \checkmark$		Mark separately.
1	(C)		In $H_2S: -2 \checkmark$ In $H_2SO_4: +6 \checkmark$	2	Answer must have sign before number to score both. ALLOW one mark for 2– AND 6+
1	(d)		Oxygen / O₂ ✓	2	
			Oxidation state or number has decreased / changed from 0 to $-2 \checkmark$		DO NOT ALLOW second mark if incorrect oxidation states are given. ALLOW gains electrons. Second mark depends on first.
1	(e)	(i)	Burette ✓	1	ALLOW minor errors in spelling e.g.: burrete (but not biuret)
1	(e)	(ii)	$26.4 \times 0.050/1000 = 0.00132 / 1.32 \times 10^{-3} \checkmark$	1	ALLOW 0.0013
1	(e)	(iii)	Answer to (ii) / 2 (= 0.00066 / 6.6 x 10 ⁻⁴) ✓	1	
1	(e)	(iv)	Answer to (iii) / 20.0 ✓ x 1000 and evaluate (= 0.033 OR 3.3 x 10 ⁻²) ✓	2	Check that candidates have carried out both ÷ 20 and x 1000 before awarding 2 marks.

Question		on	Answer	Marks	Guidance
1	(e)	(v)	Answer to (iv) x 250 /10 (=0.825) ✓	2	ALLOW s.f. mark for any 3 sig fig answer that follows
			0.825 to 3 s.f. ✓		from any correctly evaluated calculation. A completely correct answer on its own scores both marks, including the s.f. mark.
			Total	18	

Question		on	Answer	Marks	Guidance
2	(a)		Alcohol ✓ Alkene ✓	2	ALLOW hydroxyl / hydroxy ALLOW C=C OR 'carbon–carbon double bond' Additional incorrect answers negate one correct answer.
2	(b)		C₅H ₁₀ O ✓	1	ALLOW elements in any order Do NOT allow C₅H₀OH
2	(c)	(i)	(Colour change from) brown/orange/yellow ✓	2	IGNORE red in the first answer Any combination of these colours but no other should be mentioned (red/brown scores mark)
			to colourless ✓		IGNORE 'clear' for the second answer Mark separately.
2	(C)	(ii)	answer to (b) + $Br_2 \rightarrow answer Br_2$ (e.g.: $C_5H_{10}O + Br_2 \rightarrow C_5H_{10}OBr_2) \checkmark$	1	ALLOW elements in any order Answer just Br ₂ added anywhere on to structure from (b), no further 'expanding' of formula.
2	(C)	(iii)	Electrophilic ✓ Addition ✓	2	ALLOW answers indicated in other ways, such as circling. Each additional underline CONs a mark.
2	(d)	(i)	Е✓	1	Candidate can draw structural formula instead of skeletal. ALLOW 'C ₂ H ₅ ' (for 'H ₃ C–CH ₂ ') and 'CH ₂ OH' BOTH structure and ' <i>E</i> ' for one mark ALLOW ambiguous attachments
2	(d)	(ii)	Rotation not possible around the C=C bond OR C=C restricts twisting \checkmark two different groups on each carbon of the C=C \checkmark	2	Mark separately IGNORE 'each side / end of C=C'

Q	Question		Answer	Marks	Guidance
2	(e)		$H_{3}C \qquad CI \qquad \qquad$	2	Candidate can draw skeletal formula instead of structural. ALLOW 'C ₂ H ₅ ' (for 'H ₃ C–CH ₂ ') and 'CH ₂ Cl' IGNORE missing hydrogen atoms on structural formulae ALLOW ambiguous attachments. Marks are for diagrams of 1,2-dichloropentane and 1,3- dichloropentane.
2	(f)	(i)		1	Candidate can draw skeletal formula instead of structural but 'end' bonds must be shown ALLOW 'C ₂ H ₅ ' (for 'H ₃ C–CH ₂ ') and 'CH ₂ OH' IGNORE brackets and 'n' ALLOW ambiguous attachments

Q	Question		Answer	Marks	Guidance
2	(f)	(ii)	Lone pair on oxygen OR oxygen small and electronegative ✓	3	Please use annotations in the answer in appropriate places. Can refer to intermolecular forces rather than intermolecular bonds. NOT lone pair on oxygen molecule.
			hydrogen with δ + charge OR H polarised in O–H bond \checkmark Polymer can also form hydrogen bonds with water \checkmark		ALLOW H polarised in N-H OR F-H bond for second mp ALLOW any of mp 1-3 from a labelled diagram, but QWC can only be scored if there is also a written description.
			QWC for reason why polymer can form hydrogen bonds with water – as it has OH OR alcohol groups \checkmark	1	Please indicate QWC using green tick or red cross on the right on the pencil icon on the answer screen.

Q	uesti	on	Answer	Marks	Guidance
2	(g)	(i)	(Potassium / sodium) dichromate / chromate / K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ / Cr ₂ O ₇ ^{2−} ✓	2	IGNORE dichromate oxidation state if dichromate written in words (ALLOW minor spelling error). IGNORE formula if correct name is given.
			Acidified / (sulfuric) acid / H₂SO₄ / H ⁺ ✓		 ALLOW hydrochloric acid / HCl / nitric acid / HNO₃ for second mark. DO NOT ALLOW the solution acidified with organic acids. IGNORE 'concentrated'. ALLOW concentrated sulphuric acid with water, but DO NOT give credit for conc. sulphuric acid as the only reagent. Any additional reagent, other than water, negates the dichromate mark, but candidate can still score the acid mark. Mark independently. IGNORE reaction conditions
2	(a)	(ii)	Aldehvde ✓	1	ALLOW carbonyl
	(3)	()			
2	(h)	(i)	To <u>boil</u> a liquid ✓ With a <u>vertical / upright</u> condenser OR allowing liquid to drop back into the flask OR without liquid boiling away	2	ALLOW 'no gases escape' Can be scored from a diagram showing flask and vertical condenser.
			OR prevent loss of products (and/or reactants) ✓		Sealed equipment CON s the second mark.

F332

Question		on	Answer	Marks	Guidance
2	(h)	(ii)	Carboxylic acid ✓	2	ALLOW 'carboxyl', NOT 'carboxylic' without 'acid' DO NOT ALLOW –OH for –O–H in structure but must show a single bond from C atom to the rest of the molecule (which can be shown as R).
			Total	25	

Q	uesti	on	Answer	Marks	Guidance
3	(a)		 SiO₂: giant covalent / giant structure / network solid / giant lattice / whole structure held together by covalent bonds, e.g.: every silicon atom is bonded to 4 oxygen atoms OR diagram showing at least 2 Si with all surrounding Os ✓ CO₂: simple molecular / molecules / O=C=O AW ✓ One from: a) weak intermolecular bonds in CO₂ b) little/less energy needed to separate molecules (of CO₂) c) bonds in SiO₂ are stronger than CO₂ intermolecular bonds ✓ 	3	 NOT giant ionic structure IGNORE giant molecule. Reference to 'oxygen molecules' CONs this mark Statements that SiO₂ has any type of intermolecular bond CONs mp1. IGNORE 'covalent'. IGNORE 'intermolecular bonds' in SiO₂ in mp3. c) Needs to be a comparison.
3	(b)		2 from: Burning fossil fuels / named fossil fuel / hydrocarbons ✓ Production of cement ✓ Making iron/ making steel ✓ Deforestation AW ✓ Fermentation ✓ Oil refining ✓	2	Must refer to the process for the mark (e.g.: not just 'fossil fuels') NOT just burning fuels in vehicles
3	(c)	(i)	 2 from: Burn a fuel from a plant source OR an example, e.g.: wood, charcoal, (bio)ethanol, etc (which are carbon neutral) ✓ Use specified alternative energy source, choosing one from: solar energy / wind turbine / nuclear energy / hydroelectric / hydrothermal / wave / geothermal ✓ Improve the efficiency of the process OR use a catalyst (so that it needs less energy to run) ✓ 	2	NOT just 'alternative fuel that does not produce greenhouse gases' ALLOW 'burn fossil fuels more efficiently' IGNORE references to recycling / capturing CO ₂

Question		on	Answer	Marks	Guidance
3	(C)	(ii)	 (Capture and storage of the gas would need) lots of equipment / energy / compression OR costs would be incurred for: remedying environmental consequences / clearance of land / new or more infrastructure AW / specific equipment / larger workforce / space for storage AW ✓ 	1	IGNORE reference to CO ₂ being gas.
3	(d)	(i)	Infrared (radiation) ✓	1	ALLOW 'IR'
3	(d)	(ii)	Makes their <u>bonds</u> vibrate (more) OR molecules gain or change in <u>vibrational energy</u> ✓	1	
3	(d)	(iii)	 <i>Either:</i> (Vibrational energy) becomes kinetic energy ✓ KE results in increased temp ✓ OR the molecules re–emit (some of the absorbed IR) ✓ in all directions ✓ 	2	Idea of transfer of energy is key here. Mark independently. ALLOW 'heat' or 'warmer' for increased temperature. NOT 'reflect' for re-emit. Second mark dependant on first in second set of marks

Question		on	Answer	Marks	Guidance
3	(e)	(i)	Equation 3.1: Equilibrium moves so that more CO_2 aqueous will be formed OR equilibrium moves to the right \checkmark Equation 3.2: (Increased CO_2 aqueous) moves equilibrium to the right \checkmark HCO ₃ ⁻ (concentration) increases \checkmark	3	If candidate implies that both equation 3.1 and equation 3.2 move to the right, but do not mention equilibrium, they score 1 of the first two marks. If they state this, and use the term equilibrium correctly at least once, they can score both mp1 and 2. One of mp 1 and 2 can be scored if the candidate states that 'the equilibrium moves to the right', but it is not clear which reaction they are referring to.
3	(e)	(ii)	System is not closed OR CO_2 moves away from the surface OR specific example of input or output of $CO_2 \checkmark$	1	ALLOW 'not a sealed system' or 'it is an open system'.
3	(f)	(i)	$\begin{array}{c} O_2 \rightarrow 20 \textbf{OR} O_2 \rightarrow 0 \ + \ 0 \ \checkmark \\ O + O_2 \rightarrow O_3 \ \checkmark \end{array}$	2	IGNORE dots ALLOW multiples
3	(f)	(ii)	High frequency radiation OR high energy radiation OR uv only present in the stratosphere / not in troposphere $AW \checkmark$ (energy is needed for) bonds in O ₂ to be broken OR O radicals are formed OR (photo)dissociation / photolysis / breakdown of O ₂ OR homolytic fission / homolysis of O ₂ \checkmark	2	ALLOW a specific frequency is needed Mark separately
3	(g)	(i)	$O_3 + O \rightarrow 2O_2 \textbf{OR} O_3 + O \rightarrow O_2 + O_2 \checkmark$	1	IGNORE state symbols
3	(g)	(ii)	(Catalyst) is in the <u>same phase/state(gases)</u> as the <u>reactants</u> ✓ NO is not used up in the reaction / NO is reformed / NO is regenerated / NO is recycled / NO is (chemically) unchanged ✓	2	ALLOW 'it' for NO. ALLOW 'does not appear in the overall equation' AW.
			Total	23	

Question		tion	Answer	Marks	Guidance
4	(a)	(i)	Propagation ✓	1	
4	(a)	(ii)	It filters / screens / absorbs / removes / prevents / shields / blocks (AW) <u>uv</u> ✓ (uv) of high energy OR high frequency / short wavelength ✓	3	IGNORE protects us from uv IGNORE high intensity radiation ALLOW UVC/ UVB/ 10 ¹⁶ Hz/ 200–320nm
			which could otherwise cause <u>skin</u> cancer / damage to DNA / damage to eyes / damage to immune system / cell mutation / affects crops / premature ageing of the <u>skin</u> \checkmark		IGNORE skin damage.
4	(b)		For CCl₂F₂: low boiling point ✓ For CCl₂FCClF₂: low reactivity OR low boiling point ✓	2	
4	(c)	(i)	 F radicals not formed (in stratosphere) OR <u>HFCs</u> not broken down (in stratosphere) ✓ because of the stronger C–F bond OR C–F needs more energy to break OR uv not high enough frequency to break C-F OR uv not high enough energy to break C–F ✓ 	2	ALLOW HFCs were already broken down in the troposphere. IGNORE references to being unreactive. IGNORE 'C-F bond is unreactive'.
4	(c)	(ii)	Advantage: Same essential properties to the CFC they are to replace OR they are broken down in the troposphere ✓ Disadvantage – one of: (they are also) greenhouse / global warming gases OR expensive (to make) OR form HF (as a breakdown product) ✓	2s	IGNORE less effective

Question			Answer	Marks	Guidance
4	(d)	(i)	The F in the molecule has a <u>lone pair</u> of electrons \checkmark that it can donate (to the δ + charged carbon atom) AND forms a (covalent) <u>bond</u> \checkmark	2	ALLOW 'HF' or 'it' for 'F in the molecule' Second mpt must be in the context of an electron pair donated. Mark independently
4	(d)	(ii)	Catalyst provides an alternative pathway ✓ with a lower activation enthalpy ✓ Total	2 14	

Q	uestion	Answer	Marks	Guidance
5	(a)	A particle with an unpaired electron ✓	3	IGNORE 'free' or 'lone' or 'single' electron ALLOW atom / molecule / ion / species for 'particle' OR 'a radical has an unpaired electron' DO NOT ALLOW 'IS an unpaired electron'.
		Homolytic (bond breaking) / homolysis \checkmark		
		Example, one from: Oxygen <u>molecule</u> / O ₂ / chlorine <u>atom</u> / C1 / ozone / O ₃ ✓		 IGNORE radicals that are not in the article. Additional answers that are not radicals CON a correct answer. ALLOW a correct equation showing the formation of a radical from the article.
5	(b)	$2CIO_3^- + 4H^+ + 2CI^- \rightarrow 2CIO_2 + CI_2 + 2H_2O \checkmark \checkmark$	2	No other species should be present in the equation. ALLOW $2CIO_3^- + 4HCI \rightarrow 2CIO_2 + CI_2 + 2CI^- + 2H_2O$ for both marks. One mark can be scored for CIO_3^- as a reactant.

Question		on	Answer	Marks	Guidance
5	(C)		Chlorine dioxide has polar bonds OR chlorine dioxide is a polar molecule OR chlorine dioxide has a permanent dipole ORA for chlorine \checkmark	4	ALLOW chlorine and oxygen have different electronegativities OR O slightly negative / C <i>l</i> slightly positive
			Chlorine dioxide forms permanent (dipole)–permanent dipole (bonds) \checkmark		ALLOW 'forces' for 'bonds'
			Chlorine forms instantaneous (dipole) – induced dipole (bonds) (QWC underlined term must be correctly spelled the first time it appears) \checkmark		ALLOW van der Waals (ignore capitals) forces, but it must be spelled correctly.
			which are much weaker than permanent dipole–permanent dipole bonds OR less energy needed to overcome instantaneous dipole – induced dipole bonds than permanent dipole – permanent dipole bonds ORA ✓		Award this for any indication that imb are stronger in ClO_2 than Cl_2 , even if not named or incorrectly named (e.g.: hydrogen bonds in ClO_2).
5	(d)	(i)	Propene / propyne (or formulae) ✓	2	ALLOW prop-1,2-diene / CH ₂ CCH ₂
			Because they have a high density of electrons (for the CIO_2 to attack) OR they are electron rich \checkmark		Mark independently.
5	(d)	(ii)	It gains electron(s) OR C/changes from +4 to $-1 / C/changes$ from +4 to +3 OR C/ oxidation state decreases \checkmark	1	IGNORE ClO ₂ oxidation number decreases.
5	(e)		Available chlorine in CIO_2 is given by: $35.5 / (35.5 + 2 \times 16) (= 0.526)$ OR $35.5 / (67.5) (= 0.526) \checkmark$ Answer x 5 (= 2.63) x 100 to make it a percentage and evaluated (= 262.96 / 263%) \checkmark	2	ALLOW 2 or more sfs, correctly rounded.

Q	Question		Answer	Marks	Guidance
5	(f)		 FIVE from: 1. Less ClO₂ needed (for disinfection) ✓ 2. Chlorine reacts by addition OR substitution reactions ORA ✓ 3. Chlorine forms (potentially) toxic chlorinated products OR (potentially) toxic products with chlorine atoms ORA ✓ 	5	ALLOW 'active at low concentrations' ALLOW 'more powerful disinfectant'
			 4. Chlorine dioxide is more soluble ORA ✓ 5. Chlorine oxidises organics to aldehydes/ketones ORA ✓ 6. C<i>I</i>O₂ forms fewer (disinfection) by-products / fewer harmful products ✓ 7. C<i>I</i>O₂ removes/disinfects bio-films ORA ✓ 		5. Both oxidising organics and products are needed.
			 8. ClO₂ is more effective against pathogens/anthrax ✓ QWC for inclusion of ONE chemical theory in explanations of the comparisons e.g.: explaining mp1 in terms of greater available chlorine OR electrons transferred OR greater oxidation capacity; linking mp2 with mp3; explain mp 4 with <u>hydrogen</u> bonding to water giving examples of organic compounds (e.g.: alcohols) converted to aldehydes/ketones example of bromide to bromate to go with mpt 6 ✓ 	1	 8. ALLOW viruses, bacteria, protozoa, micro-organisms. Please use annotations in the answer in appropriate places. Please indicate QWC using a tick at the appropriate point in the candidate's answer.
			Total	20	

F332

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

