

# GCE

## **Chemistry B (Salters)**

Advanced GCE

Unit F334: Chemistry of Materials

### Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

| Q | uesti | on  | Answer                                                                                                                                                                                                                                                                                                  | Mark | Guidance                                                                                                                                                                                                                                                 |
|---|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | а     | i   | ethanal ✓                                                                                                                                                                                                                                                                                               | 1    | DO NOT ALLOW acetaldehyde                                                                                                                                                                                                                                |
|   |       | ii  | acidified / H <sup>+</sup> ✓                                                                                                                                                                                                                                                                            | 3    | IGNORE any sodium/potassium ions in formula/name                                                                                                                                                                                                         |
|   |       |     | dichromate / $Cr_2O_7^{2-}$ $\checkmark$                                                                                                                                                                                                                                                                |      | <b>ALLOW</b> only sulfuric acid / $H_2SO_4$                                                                                                                                                                                                              |
|   |       |     | distil ✓                                                                                                                                                                                                                                                                                                |      | IGNORE fractional<br>ALLOW distillation<br>DO NOT ALLOW if reflux is also stated                                                                                                                                                                         |
|   |       | 111 | (strong) peak/trough at around 1720 (cm <sup>-1</sup> ) / anywhere in region <b>1700-1725 indicates C=O</b> (in carboxylic acid) (NOT PRESENT IN ETHANOL) ✓                                                                                                                                             | 3    | <ul> <li>OR no peak above 3200 (cm<sup>-1</sup>) OR in region of 3600-3640 (cm<sup>-1</sup>) for –OH in alcohol</li> <li>DO NOT ALLOW No peak/trough at 1050-1300 for C-O in alcohol (cm<sup>-1</sup>) since peaks are present in this region</li> </ul> |
|   |       |     | (broad) peak/trough at around 3100 (cm <sup>-1</sup> ) / <i>anywhere</i> in region <b>2500-3200 indicates O-H</b> (in carboxylic acid) (NOT PRESENT IN COMPOUND A) ✓                                                                                                                                    |      | <b>ALLOW</b> no (strong) peak/trough at around 1720-1740 (cm <sup>-1</sup> ) for aldehyde group in compound A                                                                                                                                            |
|   |       |     | ethanoic acid <b>OR</b> Compound B ✓                                                                                                                                                                                                                                                                    |      | DO NOT ALLOW a carboxylic acid                                                                                                                                                                                                                           |
|   |       |     |                                                                                                                                                                                                                                                                                                         |      | ALLOW labels on peaks in spectrum                                                                                                                                                                                                                        |
|   |       | iv  | Any suggestion that<br>indicates that reflux/excessive heating took place<br>/ distillation of ethanal as it was formed did not take place<br>OR<br>excess acidified dichromate was used / acidified dichromate<br>was not added slowly to ethanol ✓<br>(ethanol/ethanal was) <u>oxidised</u> further ✓ | 2    |                                                                                                                                                                                                                                                          |
| 1 | b     | i   | ester ✓                                                                                                                                                                                                                                                                                                 | 1    |                                                                                                                                                                                                                                                          |

| Question | Answer                                                                                                                                                                                            | Mark | Guidance                                      |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------|--|
| ii       | $C_2H_5OH + CH_3COOH \rightarrow CH_3COOC_2H_5 + H_2O$<br>ethanoic acid correct ✓<br>products correct ✓                                                                                           | 2    | ALLOW any correct type of structural formulae |  |
| 111      | $\frac{\text{concentrated}}{\text{act as catalyst OR speed up reaction rate OR absorb water } \checkmark$                                                                                         | 2    | IGNORE references to activation enthalpy      |  |
| iv       | reduces number of steps / increases atom economy<br>OR could be cheaper<br>OR could be faster<br>OR reduces energy requirements<br>OR can be carried out at low temperature<br>OR can be reused ✓ | 1    |                                               |  |

#### Mark Scheme

#### June 2011

| Question | Answer                                                                                                                                                  | Mark | Guidance                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|
| 1 c      | ANY 5 POINTS FROM THE FOLLOWING 6:                                                                                                                      | 6    | PLEASE ANNOTATE MARKS GIVEN WITH ✓<br>PUT ✓ for QWC next to 'pencil' icon                                                        |
|          | 1. enzymes (are proteins / polypeptides) with a <b>specific</b> / <i>AW</i> <b>order</b> / sequence <b>of amino acids</b> ✓                             |      | 1. enzymes have a sequence of amino acids                                                                                        |
|          | 2. if the DNA is damaged the <b>primary structure</b> of the protein / <b>order of the amino acids</b> in the enzyme <b>will be altered</b> / changed ✓ |      | 2. damage to DNA leads to different amino acids / primary structure                                                              |
|          | 3. so the <b>tertiary structure</b> /folding of chains of the enzyme will also <b>alter</b> / change $\checkmark$                                       |      | 3. resulting in different tertiary structure                                                                                     |
|          | 4. the <b>active site</b> (is part of the tertiary structure and) is where the <b>reaction with the substrate</b> takes place $AW \checkmark$           |      | 4. reaction takes place / substrate fits in at active site                                                                       |
|          | 5. an altered active site will not have the correct shape $\checkmark$                                                                                  |      | 5. active site shape alters                                                                                                      |
|          | 6. and (interact with the substrate) by forming the correct / $AW$ intermolecular bonds / forces $\checkmark$                                           |      | 6. substrate can not bind/interact with active site<br>OR can not form substrate-complex<br>ALLOW by binding/bonding differently |
|          | AWARD QWC MARK FOR altered/different active site linked to less/no reaction / enzyme does not work $AW \checkmark$                                      |      |                                                                                                                                  |
|          |                                                                                                                                                         | 21   |                                                                                                                                  |

| Q | uesti | on  | Answer                                                                                                                                                                                                                                                                                                                                        | Mark | Guidance                                                                                                     |
|---|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------|
| 2 | а     | i   | $T_{\rm g}$ of PMMA is <b>above RT</b> so will be brittle / not enough energy<br>to break intermolecular bonds / chains can not move over<br>each other $\checkmark$<br>$T_{\rm g}$ of PMA is <b>below RT</b> so will be flexible/ rubbery / enough<br>energy to break intermolecular bonds / chains can move over<br>each other $\checkmark$ | 2    | IGNORE any reference to crystallinity                                                                        |
|   |       | ii  | chains in PMMA cannot move/slide over each other (easily)<br>ORA $\checkmark$                                                                                                                                                                                                                                                                 | 1    | ORA Chains in PMA can move over each other (easily) $\checkmark$                                             |
|   |       | iii | add a plasticiser / copolymerisation / add a copolymer </td <td>1</td> <td>DO NOT ALLOW cold-drawing</td>                                                                                                                                                                                                                                     | 1    | DO NOT ALLOW cold-drawing                                                                                    |
|   | b     | i   | intermolecular bonds in propene are instantaneous (dipole) – induced dipole $\checkmark$                                                                                                                                                                                                                                                      | 4    | DO NOT ALLOW id-id bonds                                                                                     |
|   |       |     | intermolecular bonds in propanone are permanent (dipole) – permanent dipole $\checkmark$                                                                                                                                                                                                                                                      |      | <b>ALLOW</b> pd-pd bonds if an abbreviation is used for a second time                                        |
|   |       |     | more energy/higher temperature for propanone required $\checkmark$                                                                                                                                                                                                                                                                            |      | <b>ALLOW</b> 1 mark if answer in terms of increased instantaneous – dipole induced dipole bonds (max mark is |
|   |       |     | because intermolecular bonds in propanone are stronger<br>ORA ✓                                                                                                                                                                                                                                                                               |      | then 2)                                                                                                      |
|   |       | ii  | hydrogen cyanide / cyanide ion ✓                                                                                                                                                                                                                                                                                                              | 1    | ALLOW HCN / CN <sup>-</sup>                                                                                  |
|   |       |     |                                                                                                                                                                                                                                                                                                                                               |      | ALLOW potassium cyanide / sodium cyanide<br>OR KCN / NaCN                                                    |
|   |       |     |                                                                                                                                                                                                                                                                                                                                               |      | IGNORE acid or alkali                                                                                        |

| F334 |
|------|
|------|

| Qı | Jestio | on  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark | Guidance                                                                                                                                                                                                         |  |
|----|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2  | b      | iii | $\begin{array}{c} H_{3}C & \overbrace{O}^{-}CN & H_{3}C & CN \\ H_{3}C & \overbrace{O}^{-} & \overbrace{H_{3}C} & O^{-} & H_{2}O \\ H_{3}C & H_{3}C & O^{-} & H_{2}O \\ H_{3}C & H_{3}C & O^{-} & H_{2}O \\ H_{3}C & H_{3}C & O^{-} & H_{3}C \\ \end{array}$ curly arrows correct on propanone $\checkmark$<br>partial charges correct on C=O $\checkmark$<br>correct anion formed $\checkmark$<br>correct reaction with H <sub>2</sub> O or H <sup>+</sup> or HCN $\checkmark$ | 4    | ALLOW mechanism if HCN is shown attacking but arrow must come from H-CN bond<br>Curly arrow from nucleophile <b>MUST</b> come from carbon in either CN ion or HCN ALLOW CN <sup>-</sup> for ion if arrow correct |  |
|    |        | iv  | (cyanide ion is a nucleophile and) the lone pair/electrons<br>(which attack the electron deficient carbon) are on C (not N) ✓<br>OR<br>nucleophile is :CN <sup>-</sup> ✓                                                                                                                                                                                                                                                                                                        | 1    | ALLOW the negative charge is on C<br>IGNORE any reference to triple bond in CN                                                                                                                                   |  |
|    |        | v   | few atoms wasted/high atom economy ✓                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | ALLOW 100% / no waste                                                                                                                                                                                            |  |
|    | С      | i   | (moderately) concentrated acid ✓<br>(heat under) reflux ✓                                                                                                                                                                                                                                                                                                                                                                                                                       | 2    | ALLOW aqueous / dilute acid / H <sup>+</sup> and water<br>DO NOT ALLOW conc. sulphuric acid or any form of<br>alkali                                                                                             |  |
|    |        | ii  | amide ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1    | IGNORE any qualification of amide i.e primary etc.<br>IGNORE any given formulae<br>DO NOT ALLOW peptide                                                                                                          |  |
|    |        | iii | only <b>F</b> 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2    | marks are independent                                                                                                                                                                                            |  |
|    |        |     | there are (2) different groups on each C (of the double bond) $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                      |      | <b>DO NOT ALLOW</b> on each side of C=C                                                                                                                                                                          |  |
|    |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20   |                                                                                                                                                                                                                  |  |

| Q | uesti | on | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark | Guidance                                                                                                                                                                                                |
|---|-------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | а     |    | Tyrosine: <u>phenol</u> ✓<br>Threonine: <u>alcohol</u> ✓<br>add (neutral) FeCl <sub>3</sub> / iron(III) chloride ✓<br>Tyrosine: turns purple/violet <b>AND</b> Threonine remains yellow<br>/does not change colour ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4    | <ul> <li>ALLOW orange BUT NOT brown alone for colour of FeCl<sub>3</sub></li> <li>ALLOW acidified dichromate ✓ – Threonine goes green AND Tyrosine remains orange / does not change colour ✓</li> </ul> |
|   | b     |    | Ho<br>HO<br>Tyrosine: correct: 1 chiral centre $\checkmark$<br>Threonine correct: 2 chiral centres $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2    |                                                                                                                                                                                                         |
|   | c     |    | $ \begin{array}{c}  & NH_2 \\  & I_2 \\  & I_2$ | 2    | IGNORE brackets and <i>n</i><br>full structural / skeletal formula not required<br>ALLOW multiple repeating units showing correct ester<br>linkage                                                      |

| Question |    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3 d      | i  | with HCI<br>with HCI<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO | 5    | ALLOW correct (full) structures but H's must be shown<br>ALLOW –NH <sub>3</sub> +ve ion without Cl <sup>¬</sup><br>$(H_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_$ |  |
|          | ii | phenols / phenol group / -OH group on tyramine will form ion /<br>react with alkalis ✓<br>ionic substances / salts are (more) soluble in water<br>OR ions interact / bond / with water (molecules)<br>OR ions are attracted to water (molecules) ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    | ALLOW forms salts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|          | _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| Q | uesti | on | Answer                                                                                                                                                                                                                                                               | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | а     |    | water / $H_2O \checkmark$                                                                                                                                                                                                                                            | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | b     | i  | <ul> <li>1. (fill) burette with KMnO₄ / MnO₄<sup>-</sup> solution ✓</li> <li>2. use bulb / volumetric / graduated / 25 cm³ / 10 cm³ pipette for sodium ethanedioate ✓</li> <li>3. to place solution in flask / beaker and then acidify (and warm flask) ✓</li> </ul> | 5    | <ul> <li>PLEASE ANNOTATE MARKS GIVEN WITH ✓</li> <li>QWC:<br/>Either burette or pipette must be spelled correctly<br/>to get both marks for 1 and 2;</li> <li>2. pipette must be qualified by type as shown OR by<br/>saying 'pipette a known / stated (e.g. 25 cm<sup>3</sup>) volume'</li> <li>for 1-4 ALLOW different ways of describing each solution,<br/>either by an appropriate name or formula</li> </ul>                                                                                |
|   |       |    | <ul> <li>4. then add KMnO₄ / MnO₄<sup>-</sup> solution slowly (AW) near end point ✓</li> <li>5. until permanent pink colour AW ✓</li> </ul>                                                                                                                          |      | <ul> <li>3. If acid is named ONLY ALLOW sulfuric acid</li> <li>4. ALLOW alternatives – e.g. swirling and use of white tile</li> <li>5. ALLOW pink colour persists / remains /is constant<br/>ALLOW 'pale pink/purple' BUT NOT 'purple' alone<br/>DO NOT ALLOW if indicator is used</li> <li>IF SOLUTIONS REVERSED <ol> <li>AND 2 score 1 mark only</li> <li>becomes permanent AW colourless solution<br/>So max mark = 4</li> </ol> </li> <li>IGNORE any reference to rough titrations</li> </ul> |
| 4 | b     | ii | moles of sodium ethanedioate = $0.0500 \times 250/1000$ (= 0.0125) $\checkmark$<br>mass = ((moles of ethanedioate) x 134) correctly evaluated (1.675(0) g) $\checkmark$                                                                                              | 2    | the marks are awarded for the working out given in<br>bold<br>ALLOW 2 - 5 sig. figs.<br>ecf for moles in mass calculation                                                                                                                                                                                                                                                                                                                                                                         |

| Q | uesti | on | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|-------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       |    | 1. moles of $C_2O_4^{2^-} = 0.0500 \times 10/1000 (= 0.000500) \checkmark$<br>2. moles of $MnO_4^- = 2/5 \times 0.0500 \times 10.0/1000 (= 0.000200)$<br>3. concentration = 2/5 x 0.0500 x 10/1000 x 1000/26.0 $\checkmark$<br>4. = 0.00769 / 7.69 x 10 <sup>-3</sup> 3 significant figures $\checkmark$                                                                                                                                                                                                                                                                                                                                                                  | 4    | the marks are awarded for the working out given in<br>bold<br>IF FINAL ANSWER IS INCORRECT PLEASE<br>ANNOTATE MARKS GIVEN WITH $\checkmark$<br>1. moles of C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> = correct concentration x correct<br>volume in dm <sup>3</sup><br>2. moles of MnO <sub>4</sub> <sup>-</sup> = 2/5 x moles of C <sub>2</sub> O <sub>4</sub> <sup>2-</sup><br>3. concentration = moles of MnO <sub>4</sub> <sup>-</sup> x 1000/26.0<br>4. must be to 3 significant figures<br>ecf from 2 and 3 |
| 4 | C     | i  | <ol> <li>transition metal ion / Cu<sup>2+</sup> reacts with one of reactants (to form a product)</li> <li>OR reacts to form an intermediate (compound) ✓</li> <li>oxidation state of the transition metal ion / Cu<sup>2+</sup> changes</li> <li>OR metal ion can be oxidised or reduced</li> <li>OR metal ion can lose or gain electrons ✓</li> <li>new ion / intermediate then reacts to reform the original transition metal ion / Cu<sup>2+</sup> AW</li> <li>OR</li> <li>form original oxidation state at end of reaction AW ✓</li> <li>activation enthalpy / energy for this reaction is lower than without the transition metal ion / Cu<sup>2+</sup> ✓</li> </ol> | 4    | PLEASE ANNOTATE MARKS GIVEN WITH ✓<br>IGNORE any name / formulae given to the intermediate<br>ALLOW transition metal ions have variable oxidation<br>states                                                                                                                                                                                                                                                                                                                                                         |
|   |       | ii | Homogeneous ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Q | Question |     | Answer                                                                                                                                                                          | Mark | Guidance                                    |
|---|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|
|   | d        | i   | during the reaction only the $[MnO_4^-]$ would be effectively<br>changing $AW$<br><b>OR</b><br>the $[C_2O_4^{2^-}]$ and $[H^+]$ would be (effectively) constant $AW \checkmark$ | 1    |                                             |
|   |          | ii  | calculate at least 2 half-lives (construction lines for two half<br>lives shown on graph) ✓<br>value of at least 2 half-lives quoted as 14.5±1 (s) ✓<br>half-life is constant ✓ | 3    |                                             |
|   |          | iii | $6.7 \times 10^{-4} = k \times 1.20 \times 10^{-3} \checkmark$<br>$k = 0.56 \ (0.558) \checkmark$<br>units = s <sup>-1</sup> \checkmark                                         | 3    | ALLOW 2+ sig figs IGNORE time <sup>-1</sup> |
|   |          |     |                                                                                                                                                                                 | 24   |                                             |

| Q | uesti | on | Answer                                                                                                                                                                                                                                                                        | Mark | Guidance                                                                                                                                                                                                                    |
|---|-------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | а     | i  | 3d     4s       Cu $\downarrow \uparrow$ $\downarrow \uparrow$ $\downarrow \uparrow$ $\downarrow \uparrow$ Cu <sup>2+</sup> $\downarrow \uparrow$ $\downarrow \uparrow$ $\downarrow \uparrow$ $\downarrow \uparrow$ $\downarrow \uparrow$ 1 mark each $\checkmark \checkmark$ | 2    | ALLOW single arrow in either direction                                                                                                                                                                                      |
|   |       | ii | Cu forms an <u>ion</u> with an incompletely/partly filled set of <u>d</u> orbitals / (sub) shells / energy levels $\checkmark$                                                                                                                                                | 1    |                                                                                                                                                                                                                             |
|   | b     | i  | the <i>E</i> <sup>e</sup> of oxygen/OH <sup>−</sup> is more positive/less negative than that for Cu <sup>2+</sup> /Cu ORA ✓                                                                                                                                                   | 2    | ORA The <i>E</i> <sup>o</sup> of Cu <sup>2+</sup> /Cu is less positive/more negative<br>than oxygen/OH <sup>-</sup><br><b>DO NOT ALLOW</b> more/less<br>electronegative/electropositive<br><b>DO NOT ALLOW</b> higher/lower |
|   |       |    | $O_2$ /oxygen will oxidise Cu / gain electrons from Cu (forming Cu <sup>2+</sup> )√                                                                                                                                                                                           |      | ORA                                                                                                                                                                                                                         |
|   |       | ii | the $E^{\circ}$ of Fe <sup>2+</sup> /Fe is more negative/less positive than that for Cu <sup>2+</sup> /Cu so Fe reacts/corrodes instead of Cu $AW \checkmark$                                                                                                                 | 1    |                                                                                                                                                                                                                             |
|   | C     |    | $Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$<br>equation correct ✓<br>state symbols correct ✓                                                                                                                                                                        | 2    | EQUATION MUST BE BALANCED                                                                                                                                                                                                   |

#### Mark Scheme

#### June 2011

| Question |   | Answer                                                                                                                               | Mark | Guidance |
|----------|---|--------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| 5        | d | EITHER barrier protection:                                                                                                           |      |          |
|          |   | Paint / grease / plastic coating / galvanising ✓<br>prevents copper reacting/corroding with oxygen/air AND<br>water ✓                |      |          |
|          |   | <b>OR</b> sacrificial protection:                                                                                                    |      |          |
|          |   | coat with/strap on blocks of Mg or Zn / galvanise $\checkmark$ the more reactive Mg or Zn corrodes/reacts instead of Cu $\checkmark$ |      |          |
|          |   |                                                                                                                                      | 10   |          |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

