RECOGNISING ACHIEVEMENT

ADVANCED GCE

MATHEMATICS

Further Pure Mathematics 2
WEDNESDAY 9 JANUARY 2008

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

1 It is given that $\mathrm{f}(x)=\ln (1+\cos x)$.
(i) Find the exact values of $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
(ii) Hence find the first two non-zero terms of the Maclaurin series for $\mathrm{f}(x)$.

2

The diagram shows parts of the curves with equations $y=\cos ^{-1} x$ and $y=\frac{1}{2} \sin ^{-1} x$, and their point of intersection P.
(i) Verify that the coordinates of P are $\left(\frac{1}{2} \sqrt{3}, \frac{1}{6} \pi\right)$.
(ii) Find the gradient of each curve at P.

3

The diagram shows the curve with equation $y=\sqrt{1+x^{3}}$, for $2 \leqslant x \leqslant 3$. The region under the curve between these limits has area A.
(i) Explain why $3<A<\sqrt{28}$.
(ii) The region is divided into 5 strips, each of width 0.2 . By using suitable rectangles, find improved lower and upper bounds between which A lies. Give your answers correct to 3 significant figures.

4 The equation of a curve, in polar coordinates, is

$$
r=1+2 \sec \theta, \quad \text { for }-\frac{1}{2} \pi<\theta<\frac{1}{2} \pi \text {. }
$$

(i) Find the exact area of the region bounded by the curve and the lines $\theta=0$ and $\theta=\frac{1}{6} \pi$.
[The result $\int \sec \theta \mathrm{d} \theta=\ln |\sec \theta+\tan \theta|$ may be assumed.]
(ii) Show that a cartesian equation of the curve is $(x-2) \sqrt{x^{2}+y^{2}}=x$.

The diagram shows the curve with equation $y=x \mathrm{e}^{-x}+1$. The curve crosses the x-axis at $x=\alpha$.
(i) Use differentiation to show that the x-coordinate of the stationary point is 1 .
α is to be found using the Newton-Raphson method, with $\mathrm{f}(x)=x \mathrm{e}^{-x}+1$.
(ii) Explain why this method will not converge to α if an initial approximation x_{1} is chosen such that $x_{1}>1$.
(iii) Use this method, with a first approximation $x_{1}=0$, to find the next three approximations x_{2}, x_{3} and x_{4}. Find α, correct to 3 decimal places.

6 The equation of a curve is $y=\frac{2 x^{2}-11 x-6}{x-1}$.
(i) Find the equations of the asymptotes of the curve.
(ii) Show that y takes all real values.

7 It is given that, for integers $n \geqslant 1$,

$$
I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} \mathrm{~d} x
$$

(i) Use integration by parts to show that $I_{n}=2^{-n}+2 n \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x$.
(ii) Show that $2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$.
(iii) Find I_{2} in terms of π.

8 (i) By using the definition of $\sinh x$ in terms of e^{x} and e^{-x}, show that

$$
\begin{equation*}
\sinh ^{3} x=\frac{1}{4} \sinh 3 x-\frac{3}{4} \sinh x . \tag{4}
\end{equation*}
$$

(ii) Find the range of values of the constant k for which the equation

$$
\sinh 3 x=k \sinh x
$$

has real solutions other than $x=0$.
(iii) Given that $k=4$, solve the equation in part (ii), giving the non-zero answers in logarithmic form.

9
(i) Prove that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}$.
(ii) Hence, or otherwise, find $\int \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$.
(iii) By means of a suitable substitution, find $\int \sqrt{4 x^{2}-1} \mathrm{~d} x$.

