ADVANCED GCE UNIT
 MATHEMATICS (MEI)

4753/01

Methods for Advanced Mathematics (C3)
MONDAY 11 JUNE 2007

Afternoon
Time: 1 hour 30 minutes

Additional materials:

Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72 .

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
This document consists of 4 printed pages.
HN/5 © OCR $2007[\mathrm{~K} / 100 / 3632] \quad$ OCR is an exempt Charity
[Turn over

Section A (36 marks)

1 (i) Differentiate $\sqrt{1+2 x}$.
(ii) Show that the derivative of $\ln \left(1-\mathrm{e}^{-x}\right)$ is $\frac{1}{\mathrm{e}^{x}-1}$.

2 Given that $\mathrm{f}(x)=1-x$ and $\mathrm{g}(x)=|x|$, write down the composite function $\operatorname{gf}(x)$.
On separate diagrams, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\operatorname{gf}(x)$.

3 A curve has equation $2 y^{2}+y=9 x^{2}+1$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y. Hence find the gradient of the curve at the point $\mathrm{A}(1,2)$.
(ii) Find the coordinates of the points on the curve at which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

4 A cup of water is cooling. Its initial temperature is $100^{\circ} \mathrm{C}$. After 3 minutes, its temperature is $80^{\circ} \mathrm{C}$.
(i) Given that $T=25+a \mathrm{e}^{-k t}$, where T is the temperature in ${ }^{\circ} \mathrm{C}, t$ is the time in minutes and a and k are constants, find the values of a and k.
(ii) What is the temperature of the water
(A) after 5 minutes,
(B) in the long term?

5 Prove that the following statement is false.
For all integers n greater than or equal to $1, n^{2}+3 n+1$ is a prime number.

6 Fig. 6 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{2} \arctan x$.

Fig. 6
(i) Find the range of the function $\mathrm{f}(x)$, giving your answer in terms of π.
(ii) Find the inverse function $\mathrm{f}^{-1}(x)$. Find the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the origin. [5]
(iii) Hence write down the gradient of $y=\frac{1}{2} \arctan x$ at the origin.

Section B (36 marks)

7 Fig. 7 shows the curve $y=\frac{x^{2}}{1+2 x^{3}}$. It is undefined at $x=a$; the line $x=a$ is a vertical asymptote.

Fig. 7
(i) Calculate the value of a, giving your answer correct to 3 significant figures.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}}$. Hence determine the coordinates of the turning points of the curve.
(iii) Show that the area of the region between the curve and the x-axis from $x=0$ to $x=1$ is $\frac{1}{6} \ln 3$.

8 Fig. 8 shows part of the curve $y=x \cos 2 x$, together with a point P at which the curve crosses the x-axis.

Fig. 8
(i) Find the exact coordinates of P .
(ii) Show algebraically that $x \cos 2 x$ is an odd function, and interpret this result graphically. [3]
(iii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(iv) Show that turning points occur on the curve for values of x which satisfy the equation $x \tan 2 x=\frac{1}{2}$.
(v) Find the gradient of the curve at the origin.

Show that the second derivative of $x \cos 2 x$ is zero when $x=0$.
(vi) Evaluate $\int_{0}^{\frac{1}{4} \pi} x \cos 2 x \mathrm{~d} x$, giving your answer in terms of π. Interpret this result graphically.

