GCE

Mathematics (MEI)

Advanced GCE 4752
Concepts for Advanced Mathematics (C2)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

SECTION A

1	[1], $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$	2	B1 for [1], $\frac{1}{2}, \frac{1}{3}$
2 (i)	$2 \frac{1}{12}$ or $\frac{25}{12}$ or $2.08(3 \ldots)$	2	M1 for $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$
2 (ii)	$\sum_{r=2}^{6} r(r+1) \text { o.e. }$	2	M1 for $[\mathrm{f}(r)=] r(r+1)$ o.e. M1 for $[a=] 6$
3 (i)	$3 x^{2}-12 x-15$	2	M1 if one term incorrect or an extra term is included.
3 (ii)	Their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ s.o.i. $x=5$ $x=-1$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
4	crossing x-axis at 0 and 2.5 \min at $(1.25,-6.25)$ $\operatorname{crossing} x$-axis at 0 and 5 \min at $(2.5,-18.75)$	1 1 1	
5	$x-\frac{6 x^{-2}}{-2} \text { o.e. }$ their $\left[5+\frac{3}{25}\right]-\left[2+\frac{3}{4}\right]$ $\text { = } 2.37 \text { o.e. c.a.o. }$	$\begin{aligned} & \hline 2 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for 1 term correct Dependent on at least M1 already earned i.s.w.
6	attempt to integrate $6 x^{2}+12 x^{\frac{1}{2}}$ $[y=] 2 x^{3}+8 x^{1.5}+\mathrm{c}$ Substitution of $(4,10)$ $[y=] 2 x^{3}+8 a^{1.5}-182 \text { or } \mathrm{c}=-182$	M1 A2 M1 A1	accept un-simplified; A1 for 2 terms correct dependent on attempted integral with $+c$ term
7	$3.5 \log _{a} x$ or $k=3.5$	2	B1 for $3 \log _{a} x$ or $1 / 2 \log _{a} x$ or $\log _{a} x^{31 / 2}$ seen

8	Subst. of $1-\cos ^{2} \theta$ or $1-\sin ^{2} \theta$ $\begin{aligned} & 5 \cos ^{2} \theta=1 \text { or } 5 \sin ^{2} \theta=4 \\ & \cos \theta= \pm \sqrt{\text { their } \frac{1}{5}} \text { or } \\ & \sin \theta= \pm \sqrt{\text { their } \frac{4}{5}} \text { o.e. } \end{aligned}$ $63.4,116.6,243.4,296.6$	M1 A1 M1 B2	Accept to nearest degree or better; B1 for 2 correct (ignore any extra values in range).
9	$\begin{aligned} & \log 18=\log a+n \log 3 \text { and } \\ & \log 6=\log a+n \log 2 \\ & \log 18-\log 6=n(\log 3-\log 2) \\ & n=2.71 \text { to } 2 \text { d.p. c.a.o. } \\ & \log 6=\log a+2.70951 \ldots \log 2 \text { o.e. } \\ & a=0.92 \text { to } 2 \text { d.p.c.a.o. } \end{aligned}$	M1* DM1 A1 M1 A1	$\begin{aligned} & \text { or } 18=a \times 3^{n} \text { and } \\ & 6=a \times 2^{n} \\ & 3=\left(\frac{3}{2}\right)^{n} \\ & n=\frac{\log 3}{\log 1.5}=2.71 \text { c.a.o. } \\ & 6=\mathrm{a} \times 2^{2.70951} \text { o.e. } \\ & =0.92 \text { c.a.o. } \end{aligned}$

Section A Total: 36

SECTION B

$\mathbf{1 0}$	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=32$ s.o.i. when $x=2, y=16$ s.o.i. $y=32 x-48$ c.a.o.	A1	B1

11 (a)	$10.6^{2}+9.2^{2}-2 \times 10.6 \times 9.2 \times \cos 68^{\circ}$ o.e. $\mathrm{QR}=11.1(3 \ldots)$ $\frac{\sin 68}{\text { their } Q R}=\frac{\sin Q}{9.2}$ or $\frac{\sin R}{10.6}$ o.e. $\mathrm{Q}=50.01 . .^{\circ} \text { or } \mathrm{R}=61.98 . .^{\circ}$ $\text { bearing }=174.9 \text { to } 175^{\circ}$	M1 A1 M1 A1 B1	Or correct use of Cosine Rule 2 s.f. or better
$\begin{array}{ll} 11 & \begin{array}{ll} \text { (b) } \\ \text { (i) } \end{array} \end{array}$	$\begin{aligned} & \text { (A) } \frac{1}{1} 2 \times 80^{2} \times \frac{2 \pi}{3} \\ & =\frac{6400 \pi}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	6702.(...) to 2 s.f. or more
11 (b) (ii)	$\begin{aligned} & \text { DC }=80 \sin \left(\frac{\pi}{3}\right)=80 \frac{\sqrt{3}}{2} \\ & \text { Area }=1 / 2 \times \text { their } D A \times 40 \sqrt{ } 3 \\ & \text { or } 1 / 2 \times 40 \sqrt{ } 3 \times 80 \times \sin (\text { their DCA }) \\ & \text { o.e. } \\ & \text { area of triangle }=800 \sqrt{ } 3 \text { or } \\ & 1385.64 \ldots \text { to } 3 \text { s.f. or more } \end{aligned}$	B1 M1 A1	both steps required s.o.i.
$\begin{array}{ll} \hline 11 & \begin{array}{l} \text { (b) } \\ \text { (iii) } \end{array} \end{array}$	$\begin{aligned} & \text { area of } 1 / 4 \text { circle }=1 / 2 \times \frac{\pi}{2} \times(40 \sqrt{ } 3)^{2} \\ & \text { o.e. } \\ & \text { " } 6702 "+" 1385.6 "-" 3769.9 " \\ & =4300 \text { to } 4320 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$[=3769.9 \ldots]$ i.e. their(b) (i) + their (b) (ii) - their $1 / 4$ circle o.e. $933^{1 / 3} \pi+800 \sqrt{ } 3$

$\begin{array}{ll} 12 & \text { (i) } \\ \text { (A) } \end{array}$	1024	2	M1 for number of buds $=2^{10}$ s.o.i.
$\begin{array}{ll} 12 & \text { (i) } \\ & \text { (B) } \end{array}$	2047	2	M1 for $1+2+4+\ldots 2^{10}$ or for $2^{11}-1$ or (their 1024$)+512+256+\ldots+1$
$\begin{array}{ll} 12 & \text { (ii) } \\ & \text { (A) } \end{array}$	no. of nodes $=1+2+. .+2^{n-1}$ s.o.i. $\frac{7 \times\left(2^{n}-1\right)}{2-1}$		no. of leaves $=7+14+\ldots+7 \times 2^{\text {n-1 }}$
$\begin{array}{ll} \hline 12 & \begin{array}{l} \text { (ii) } \\ \text { (B) } \end{array} \end{array}$	$7\left(2^{n}-1\right)>200000$ $2^{n}>\frac{200000}{7}+1 \text { or } \frac{200007}{7}$ $n \log 2>\log \left(\frac{200007}{7}\right)$ and completion to given ans $[n=] 15 \text { c.a.o. }$	M1 M1 M1 B1	or $\log 7+\log 2^{n}>\log 200007$

[^0]OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

[^0]: Section B Total: 36

