Mathematics (MEI)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

2(a)(i)	$\begin{aligned} & I F=\exp \int 2 \mathrm{~d} t \\ & =\mathrm{e}^{2 t} \\ & \mathrm{e}^{2 t} \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 \mathrm{e}^{2 t} y=1 \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 t} y\right)=1 \\ & \mathrm{e}^{2 t} y=t+A \\ & {\left[y=\mathrm{e}^{-2 t}(t+A)\right]} \end{aligned}$ Alternative method: CF $y=E \mathrm{e}^{-2 t}$ PI $y=F t \mathrm{e}^{-2 t}$ In DE: $\mathrm{e}^{-2 t}(F-2 F t)+2 F t \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}$ $F=1$ $y=\mathrm{e}^{-2 t}(t+E)$	M1 A1 M1* A1 *M1A1 B1 B1 M1 M1A1 F1	Attempt IF Multiply by IF Integrate both sides	6
(ii)	$\begin{aligned} & \frac{\mathrm{d} z}{\mathrm{~d} t}+2 z=\mathrm{e}^{-2 t}(t+A) \\ & I=\mathrm{e}^{2 t} \\ & \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} z\right)=t+A \\ & \mathrm{e}^{2 t} z=\frac{1}{2} t^{2}+A t+B \\ & z=\mathrm{e}^{-2 t}\left(\frac{1}{2} t^{2}+A t+B\right) \\ & t=0, z=1 \Rightarrow 1=B \\ & \dot{z}=-2 \mathrm{e}^{-t}\left(\frac{1}{2} t^{2}+A t+B\right)+\mathrm{e}^{-2 t}(t+A) \\ & t=0, \dot{z}=0 \Rightarrow 0=-2 B+A \Rightarrow A=2 \\ & z=\mathrm{e}^{-2 t}\left(\frac{1}{2} t^{2}+2 t+1\right) \end{aligned}$ Alternative method: $\text { PI } x=\left(P t+Q t^{2}\right) \mathrm{e}^{-2 t}$ $P=A \text { and } Q=0.5$ $z=\mathrm{e}^{-2 t}\left(\frac{1}{2} t^{2}+A t+B\right)$ Then as above	B1 M1 A1 M1 M1 M1 A1 B1 M1A1	Correct or follows (i) Multiply by IF and integrate Use condition Differentiate (product rule) Use condition Correct form of PI Complete method	7
(b)(i)	$\begin{aligned} & \alpha+2=0 \Rightarrow \alpha=-2 \\ & \mathrm{CF} x=C \mathrm{e}^{-2 t} \\ & \text { PI } x=a \sin t+b \cos t \\ & \dot{x}=a \cos t-b \sin t \\ & \text { In DE: } a \cos t-b \sin t+2 a \sin t+2 b \cos t=\sin t \\ & a+2 b=0,-b+2 a=1 \\ & \Rightarrow a=\frac{2}{5}, b=-\frac{1}{5} \end{aligned}$	B1 B1 M1 M1 A1	CF correct Correct form of PI Differentiate and substitute Compare and solve	
	GS $x=\frac{1}{5}(2 \sin t-\cos t)+C \mathrm{e}^{-2 t}$	F1	Their PI + CF	6
(ii)	$\begin{aligned} & \dot{x}=0, t=0 \Rightarrow x=0 \quad \text { (from DE) } \\ & 0=-\frac{1}{5}+C \\ & x=\frac{1}{\varsigma}\left(2 \sin t-\cos t+\mathrm{e}^{-2 t}\right. \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Or differentiate Use condition	
	$x=\frac{1}{5}\left(2 \sin t-\cos t+\mathrm{e}^{-2 t}\right.$	A1		3
(iii)	For large $t, x \approx \frac{1}{5}(2 \sin t-\cos t)=\frac{1}{5} \sqrt{5} \sin (t-\phi)$ So x varies between $-\frac{1}{5} \sqrt{5}$ and $\frac{1}{5} \sqrt{5}$		Complete method Accept $\|x\| \leq \frac{1}{5} \sqrt{5}$	2

3(i)	$\int y^{-\frac{1}{2}} \mathrm{~d} y=\int-k \mathrm{~d} t$				M1	Separate and integrate		
	$2 y^{\frac{1}{2}}=-k t+B$				A1	LHS		
					A1	RHS		
	$t=0, y=1 \Rightarrow 2=B$				M1	Use condition		
	$t=2, y=0.81 \Rightarrow 1.8=-2 k+2$				M1	Use condition		
	$\Rightarrow k=0.1$				A1			
	$y^{\frac{1}{2}}=1=0.05 t$							
	$y=(1-0.05 t)^{2}$				A1			
	Valid for $1-0.05 t \geq 0$, i.e. $t \leq 20$				B1 $\sqrt{ }$	\checkmark on arithmetical error in k		
	${ }^{y} \uparrow$				B1B1	Shape		
					Intercepts			
	\uparrow	20						10
(ii)	$\int \pi y^{\frac{3}{2}} \mathrm{~d} y=\int-0.4 \mathrm{~d} t$				M1	Separate and integrate		
	$\frac{2}{5} \pi y^{\frac{5}{2}}=-0.4 t+C$				A1	LHS		
					A1	RHS		
	$t=0, y=1 \Rightarrow C=\frac{2}{5} \pi$				M1	Use condition		
	$y=0.81 \Rightarrow t=1.287$				A1		5	
(iii)	$\dot{y}=-\frac{0.4 \sqrt{y}}{\pi\left(2 y-y^{2}\right)}$				M1	Rearrange (implied by correct values)		
		y	\dot{y}	hi	M1	Use algorithm		
	0	1	-0.12732	-0.01273	A1	$y(0.1) \quad$ (awrt 0.987)		
	0.1	0.987268	-0.12653	-0.01265	M1	Use algorithm		
	0.2	0.974614			A1	$y(0.2) \quad(0.974$ to 0.975$)$	5	
(iv)	$A=$ horizontal cross-sectional area, then $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k_{1} v$				M1	Rate of change of volume		
	$A \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{\mathrm{dV}}{\mathrm{~d} t}$				M1	Relate rates of change of y and volume		
	$\Rightarrow A \frac{\mathrm{~d} y}{\mathrm{~d} t}=-k_{1} k_{2} \sqrt{y}$				M1	Eliminate volume and/or velocity		
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} t}=-k \sqrt{y}$				E1	Complete argument	4	

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

