

GCE

Mathematics (MEI)

Advanced GCE

Unit 4756: Further Methods for Advanced Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4756 (FP2) Further Methods for Advanced Mathematics

1 (a)(i)			
		G1	Correct general shape including
		G1	Correct form at O and no extra sections.
			For an otherwise correct curve with a
		2	sharp point at the bottom, award G1G0
(ii)	Area = $\frac{1}{2}a^2 \int_{0}^{2\pi} (1-\sin\theta)^2 d\theta$	M1	Integral expression involving $(1 - \sin \theta)^2$
	$=\frac{1}{2}a^{2\pi}(1-2\sin\theta+\sin^2\theta)d\theta$	M1	Expanding Correct integral expression incl limits
		A1	(which may be implied by later work)
	$=\frac{1}{2}a^{2}\int_{0}^{2\pi}\left(\frac{3}{2}-2\sin\theta-\frac{1}{2}\cos 2\theta\right)d\theta$	M1	Using $\sin^2 \theta = \frac{1}{2} - \frac{1}{2}\cos 2\theta$
	$=\frac{1}{2}a^{2}\left[\frac{3}{2}\theta+2\cos\theta-\frac{1}{4}\sin 2\theta\right]_{0}^{2\pi}$	A2	Correct result of integration. Give A1 for one error
	$=\frac{3}{2}\pi a^2$	A1	Dependent on previous A2
	2	7	
(b)(i)	$\int_{1}^{\frac{1}{2}} \frac{1}{1-x} dx = \frac{1}{2} \int_{1}^{\frac{1}{2}} \frac{1}{1-x} dx = \frac{1}{2} \left[2 \arctan 2x \right]_{1}^{\frac{1}{2}}$	M1	arctan alone, or any tan substitution
(0)(1)	$\int_{-\frac{1}{2}}^{1} 1+4x^{2} 4 \int_{-\frac{1}{2}}^{1} \frac{1}{4}+x^{2} 4 \int_{-\frac{1}{2}}^{1} \frac{1}{4}+x^{2}+x^{2} 4 \int_{-\frac{1}{2}}^$	A1	$\frac{1}{4} \times 2$ and $2x$
	$=\frac{1}{2}\left(\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right)$		
	$=\frac{\pi}{2}$	A1	Evaluated in terms of π
	4	3	
(ii)	$x = \frac{1}{2} \tan \theta$	M1	Any tan substitution
	$\Rightarrow dx = \frac{1}{2} \sec^2 \theta d\theta$		1
	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\left(\sec^{2}\theta\right)^{\frac{3}{2}}} \times \frac{\sec^{2}\theta}{2} d\theta$	A1A1	$\left(\frac{1}{(\sec^2\theta)^{\frac{3}{2}}}, \frac{\sec^2\theta}{2}\right)$
	$= \int_{-\frac{\pi}{2}} \frac{1}{2} \cos \theta d\theta$		
	$\begin{bmatrix} 1 \end{bmatrix}^{\frac{\pi}{4}}$	M1	Integrating $a \cos b\theta$ and using consistent limits. Dependent on M1 above
	$= \left\lfloor \frac{1}{2} \sin \theta \right\rfloor_{-\frac{\pi}{4}}$	Alft	$\frac{a}{b}\sin b\theta$
	$=\frac{1}{2}\left(\frac{1}{\sqrt{2}}-\left(-\frac{1}{\sqrt{2}}\right)\right)$		
	$\frac{2(\sqrt{2} (\sqrt{2}))}{1}$		
	$=\frac{1}{\sqrt{2}}$	A1	
		6	18

r

2 (a)	$\cos 5\theta + j \sin 5\theta = (\cos \theta + j \sin \theta)^{\circ}$ $= c^{5} + 5c^{4}js - 10c^{3}s^{2} - 10c^{2}js^{3} + 5cs^{4} + js^{5}$ $\Rightarrow \cos 5\theta = c^{5} - 10c^{3}s^{2} + 5cs^{4}$ $\sin 5\theta = 5c^{4}s - 10c^{2}s^{3} + s^{5}$ $\Rightarrow \tan 5\theta = \frac{5c^{4}s - 10c^{2}s^{3} + s^{5}}{c^{5} - 10c^{3}s^{2} + 5cs^{4}}$ $= \frac{5t - 10t^{3} + t^{5}}{1 - 10t^{2} + 5t^{4}}$ $= \frac{t(t^{4} - 10t^{2} + 5)}{5t^{4} - 10t^{2} + 1}$	M1 M1 A1 A1 M1 A1 (ag)	Expanding Separating real and imaginary parts. Dependent on first M1 Alternative: $16c^5 - 20c^3 + 5c$ Alternative: $16s^5 - 20s^3 + 5s$ Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and simplifying
(b)(i)	$\arg(-4\sqrt{2}) = \pi$	0	
	\Rightarrow fifth roots have $r = \sqrt{2}$	B1	
	and $\theta = \frac{\pi}{5}$	B1	No credit for arguments in degrees
	$\int_{\Omega} \frac{1}{\epsilon} j\pi \int_{\Omega} \frac{3}{\epsilon} j\pi \int_{\Omega} \int_{\Omega} j\pi \int_{\Omega} \frac{1}{\epsilon} j\pi \int_{\Omega} \frac{9}{\epsilon} j\pi$	M1	Adding (or subtracting) $\frac{2\pi}{5}$
	$\Rightarrow z = \sqrt{2e^3} , \sqrt{2e^3} , \sqrt{2e^3} , \sqrt{2e^3} , \sqrt{2e^3} $	A1 4	All correct. Allow $-\pi \le \theta < \pi$
		G1 G1 2	Points at vertices of "regular" pentagon, with one on negative real axis Points correctly labelled
(iii)	$\arg(w) = \frac{1}{2} \left(\frac{\pi}{5} + \frac{3\pi}{5} \right) = \frac{2\pi}{5}$	B1	
	$ w = \sqrt{2} \cos \frac{\pi}{5}$	M1 A1ft 3	Attempting to find length F.t. (positive) <i>r</i> from (i)
(iv)	$w = \sqrt{2} \cos \frac{\pi}{5} e^{\frac{2}{5}\pi i} \Longrightarrow w^n = \left(\sqrt{2} \cos \frac{\pi}{5}\right)^n e^{\frac{2}{5}\pi n i}$		
	which is real if $\sin \frac{2\pi n}{5} = 0 \Rightarrow n = 5$	B1	
	$\left w^{5}\right = \left(\sqrt{2}\cos\frac{\pi}{5}\right)^{5}$	M1	Attempting the <i>n</i> th power of his modulus in (iii), or attempting the modulus of the <i>n</i> th power here
	$\Rightarrow a = 2^{\frac{\pi}{2}} \cos^5 \frac{\pi}{5}$	A1	Accept 1.96 or better
		3	18

3 (i)	$det(\mathbf{M}) = 1(16 - 12) + 1(20 - 18) + k(10 - 12)$	M1	Obtaining det(\mathbf{M}) in terms of k
	= 6 - 2k	A1	
	\Rightarrow no inverse if $k = 3$	A1	Accept $k \neq 3$ after correct determinant
		N/1	Evaluating at least four cofactors
		MII	(including one involving k)
	$\begin{pmatrix} 4 & 4+2k & -6-4k \end{pmatrix}$	A 1	Six signed cofactors correct
	$\mathbf{M}^{-1} = \frac{1}{(-2)^{1}} \begin{bmatrix} -2 & 4 - 3k & 5k - 6 \end{bmatrix}$	AI	(including one involving k)
	6-2k -2 -5 9	N/1	Transposing and dividing by det(M).
		IVI I	Dependent on previous M1M1
		A1	
		7	
	(1 -1 3)(-3) (-3)	M1	Setting $k = 3$ and multiplying
(ii)	5 4 6 3 = 3	1011	Setting k = 5 and multiplying
(11)		Δ.1	
	$(3 \ 2 \ 4)(1)(1)$	ΛΙ	
		2	
	$\left(-3\right)$		
(iii)	3 is an eigenvector	R1	For credit here, 2/2 scored in (ii)
(111)		DI	Accept "invariant point"
	corresponding to an eigenvalue of 1	Bl	
		2	
(iv)	3x + 6y = 1 - 2t, $x + 2y = 2$, $5x + 10y = -4t$	M1	Eliminating one variable in two different
Ì,	(22, 0, 1, 10, -4, 1, 1, 5, 1, 10, -2, 1, 1, 2, -1)		ways
	(or 9x + 18z = 4t + 1, 5x + 10z = 2t, x + 2z = -1)	A 1	Two correct equations
	(01 9y - 9z - 1 - 5i, 5y - 5z5i, 2y - 2z - 5) For solutions $1 - 2t - 3 \times 2$	AI M1	Validly obtaining a value of t
	For solutions, $1 - 2i - 3 \wedge 2$	1111	validiy obtaining a value of t
	$\Rightarrow t = -\frac{5}{2}$	A1	
	2		
		M1	Obtaining general solution by setting one
	$x = \lambda, y = 1 - \frac{1}{2}\lambda, z = -\frac{1}{2} - \frac{1}{2}\lambda$	A 1	unknown = λ and finding other two in
		AI	terms of λ (accept unknown instead of λ)
	Straight line	B1	Accept sneat . Independent of all
	-	7	previous marks
1		1	10

4 (i)	$\cosh y = x \Longrightarrow x = \frac{1}{2} \left(e^y + e^{-y} \right)$	B1	Using correct exponential definition
	$\Rightarrow 2x = e^{y} + e^{-y}$		
	$\Rightarrow \left(e^{y}\right)^{2} - 2xe^{y} + 1 = 0$	M1	Obtaining quadratic in e^{y}
	$2r + \sqrt{4r^2 - 4}$	M1	Solving quadratic
	$\Rightarrow e^{y} = \frac{2x \pm \sqrt{4x^{2} - 4}}{2} = x \pm \sqrt{x^{2} - 1}$	Al	$x \pm \sqrt{x^2 - 1}$
	$\Rightarrow y = \ln(x \pm \sqrt{x^2 - 1})$		
	$\left(x + \sqrt{x^2 - 1}\right)\left(x - \sqrt{x^2 - 1}\right) = 1$	M1	Validly attempting to justify \pm in printed answer
	$\Rightarrow y = \pm \ln(x + \sqrt{x^2 - 1})$	A1 (ag)	
	$\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 - 1})$ because this is the principal value	B1	Reference to arcosh as a function, or correctly to domains/ranges
		7	
(ii)	$\int_{\frac{4}{5}}^{1} \frac{1}{\sqrt{25x^2 - 16}} dx = \frac{1}{5} \int_{\frac{4}{5}}^{1} \frac{1}{\sqrt{x^2 - \frac{16}{25}}} dx$		
	$1 \begin{bmatrix} (5\mathbf{x}) \end{bmatrix}^{l}$	M1	arcosh alone, or any cosh substitution
	$=\frac{1}{5}\left[\operatorname{arcosh}\left(\frac{3x}{4}\right)\right]_{\frac{4}{3}}$	A1A1	$\frac{1}{5}, \frac{5x}{4}$
	$=\frac{1}{5}\left(\operatorname{arcosh}\left(\frac{5}{4}\right) - \operatorname{arcosh}(1)\right)$		
	$=\frac{1}{5}\ln\left(\frac{5}{4} + \sqrt{\left(\frac{5}{4}\right)^2 - 1}\right) = 0$	M1	Substituting limits and using (i) correctly at any stage (or using limits of u in logarithmic form). Dep. on first M1
	$=\frac{1}{5}\ln 2$	A1	
	OR $=\frac{1}{5}\left[\ln\left(x+\sqrt{x^2-\frac{16}{25}}\right)\right]_{\frac{4}{5}}^{1}$ N	,	$\ln\left(kx + \sqrt{k^2 x^2 + \dots}\right)$ Give M1 for $\ln\left(k_1 x + \sqrt{k_2^2 x^2 + \dots}\right)$
	A1A		$\frac{1}{5}, \ln\left(x + \sqrt{x^2 - \frac{16}{25}}\right) $ o.e.
	$=\frac{1}{5}\ln\frac{8}{5} - \frac{1}{5}\ln\frac{4}{5}$		
	$=\frac{1}{5}\ln 2$		
	5	5	
(iii)	$5\cosh x - \cosh 2x = 3$		Attempting to express each 2x in terms
	$\Rightarrow 5 \cosh x - (2 \cosh^2 x - 1) = 3$	M1	of $\cosh x$
	$\Rightarrow 2\cosh^2 x - 5\cosh x + 2 = 0$		Solving quadratic to obtain at least one
	$\Rightarrow (2\cosh x - 1)(\cosh x - 2) = 0$	M1	real value of cosh x
	$\Rightarrow \cosh x = \frac{1}{2}$ (rejected)	A1	Or factor 2 $\cosh x - 1$
	or $\cosh x = 2$	A1	
	$\Rightarrow x = \ln\left(2 + \sqrt{3}\right)$	Alft	F.t. $\cosh x = k, k > 1$
	$x = -\ln\left(2 + \sqrt{3}\right) \text{ or } \ln\left(2 - \sqrt{3}\right)$	A1ft 6	F.t. other value. Max. A1A0 if additional real values quoted 18

4756

(:-)	u(0) = 0 magnided $u > 1$	D1	
(\mathbf{IV})	$y(0) = 0$ provided $m \ge 1$	BI	
	v'(1) = 0 provided $n > 1$	B1	
		2	
		4	
(v)	For large <i>m</i> and <i>n</i> , the curve approaches the <i>x</i> -axis	B1	Comment on shape
, ,	1		-
	$\rightarrow \int r^m (1-r)^n dr \rightarrow 0$ as $m \rightarrow \infty$	D1	Indonandant
	$\rightarrow \int x (1-x) dx \rightarrow 0 as m, n \rightarrow \infty$	DI	maependent
	0		
		2	
(vi)	e = 0.01 $n = 0.01$		
(1)	c.g. m = 0.01, n = 0.01		
	[y		
	0.8 †		
	0.6 †		
	0.4		
	0.4		
	0.2		
	x		
		M1	Evidence of investigation s.o.i.
	The curve tends to $y = 1$	Δ1	Accept "three sides of (unit) square"
	The curve tends to y T	111	recept lines sides of (unit) square
		2	18

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2011