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1 (a)(i)  x = r cos θ, y = r sin θ, x2 + y2 = r2 M1 Using at least one of these 

  r = 2(cos θ + sin θ)   
  r2 = 2r(cos θ + sin θ)   
  x2 + y2 = 2x + 2y A1 (ag) Working must be convincing 
  x2  2x + y2  2y = 0   
  (x  1)2 + (y  1)2 = 2   

  which is a circle centre (1, 1) radius 2  M1 
Recognise as circle or appropriate 
algebra leading to (x − a)2 + (y − b)2 = r2 

 

2

1

2

 

G1 
 
G1 
 
 
 

Attempt at complete circle with centre in 
first quadrant 
A circle with centre and radius indicated, 
or centre (1, 1) indicated and passing 
through (0, 0), or (2, 0) and (0, 2) 
indicated and passing through (0, 0) 

   5  

(ii) Area = 2 21
2 0

r d


    

  =  2 2

0
2 cos sin d



    M1 
Integral expression involving r2 in terms 
of θ 

  =  2 2

0
2 cos 2sin cos sin d


2       M1 Multiplying out 

  =  2

0
2 1 2sin cos d



    A1 cos2θ + sin2θ = 1 used 

  = 21
2 0

2 cos 2


     or 22

0
2 sin



    etc. A2 
Correct result of integration with correct 
limits. Give A1 for one error 

  =     2
1

2
1

2 02   M1 Substituting limits. Dep. on both M1s 

  = 2  A1 Mark final answer 
   7  

(b)(i)  
1
2 21

4

1
( )

1
f x 

 x
=

2

2

4 x
 M1 

A1 
Using Chain Rule 
Correct derivative in any form 

   2  

(ii)    12 2 41 1 1 1 1
2 4 2 4 16( ) 1 1 ...f x x x x


        M1 Correctly using binomial expansion 

  2 41 1 1
2 8 32 ...x x     A1 Correct expansion 

    3 51 1 1
2 24 160 ...f x x x x     c  M1 

A1 
Integrating at least two terms 
 

 But c = 0 because arctan(0) = 0 A1 Independent 
   5  19

 

1 
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2 (a)(i) zn + z–n = 2 cos nθ  B1  

 zn – z–n = 2j sin nθ B1  
   2  

(ii) (z + z–1)6 = z6 + 6z4 + 15z2 + 20 + 15z2 + 6z4 + z6 M1 Expanding (z + z–1)6 
  = z6 + z–6 + 6(z4 + z–4) + 15(z2 + z–2) + 20   

  64 cos6θ = 2 cos 6θ + 12 cos 4θ + 30 cos 2θ + 20 M1 
Using zn + z–n = 2 cos nθ with n = 2, 4 or 
6. Allow M1 if 2 omitted, etc. 

  cos6θ = 3 151
32 16 32 16cos 6 cos 4 cos 2    5    

  cos6θ =  1
32 cos 6 6cos 4 15cos 2 10      A1 (ag)  

   3  
(iii) (z – z–1)6 = z6 + z–6 – 6(z4 + z–4) + 15(z2 + z–2) – 20 B1  

  64 sin6θ = 2 cos 6θ  12 cos 4θ + 30 cos 2θ  20 
M1 
A1 

Using (i) as in part (ii) 
Correct expression in any form 

  sin6θ = 3 151
32 16 32 16cos 6 cos 4 cos 2   5      

  cos6θ  sin6θ = 151
16 16cos 6 cos 2   M1 

A1 
Attempting to add or subtract 
 

 OR cos2θ = 1
2 (cos 2θ + 1)  B1  This used 

  16 cos4θ = 2 cos 4θ + 8 cos 2θ + 6 M1  Obtaining an expression for cos4θ 

  cos4θ = 1
8 cos 4θ + 1

2 cos 2θ + 3
8  A1  Correct expression in any form 

  cos6θ  sin6θ = 2 cos6θ − 3 cos4θ + 3 cos2θ − 1   

  = 151
16 16cos 6 cos 2    M1A1  Attempting to add or subtract 

   5  

(b)(i) z1
2 = 38

j

e


 z1 = 62 2
j

e
   

   M1 
Correctly manipulating modulus and 
argument 

  
7

62 2
j

e


  A1 8 , 
7

6


or

5

6


 . Condone r(c + js) 

 z2
3 = 38

j

e


 z2 =
4

9 32
j

e
   

   M1 
Correctly manipulating modulus and 
argument 

  
13

92
j

e


  A1 2, 
13

9


or

5

9


 . Condone r(c + js) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G1 
G1 
 
 

Moduli approximately correct 
Arguments approximately correct 
Give G1G0 for two points approximately 
correct 

   6  

(ii) z1z2 =
7

62 2
j

e


×
13

92
j

e


   

       = 
7 13

6 94 2
j

e
   

   M1 
Correctly manipulating modulus and 
argument 

       = 
11

184 2
j

e


 A1 Accept any equivalent form 

 Lies in second quadrant A1  
   3  19

w 

z1 
z2 

 

2 
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3 (i) det(M – λI) = (1 – λ)[(3 – λ)(1 – λ) + 8] M1 Obtaining det(M – λI) 

  + 4[2(1 – λ) – 2] + 5[8 + (3 – λ)] A1 Any correct form 
  = (1  λ)(λ2  4λ + 11) + 4(2λ) + 5(11  λ)   
  = λ3 + 5λ2  15λ + 11  8λ + 55  5λ = 0 M1 Simplification 
  λ3  5λ2 + 28λ  66 = 0 A1 (ag) www, but condone omission of = 0 
   4  

(ii) λ3  5λ2 + 28λ  66 = 0 M1 
Factorising and obtaining a quadratic. 
If M0, give B1 for substituting λ = 3 

  (λ  3)(λ2  2λ + 22) = 0 A1 Correct quadratic 
 λ2  2λ + 22 = 0  b2  4ac = 84 M1 Considering discriminant o.e. 
 so no other real eigenvalues A1 Conclusion from correct evidence www 
   4  

(iii) λ = 3   

2 4 5 0

2 0 2 0

1 4 2 0

x

y

z

   
     
     

 
 
 
 
 

  

  2x  4y + 5z = 0   
  2x  2z = 0   
  x + 4y  2z = 0 M1 Two independent equations 

  x = z = k, y = 3
4 k M1 Obtaining a non-zero eigenvector 

  eigenvector is  

4

3

4

 
 
 
 
 

A1  

  eigenvector with unit length is 

4
1

3
41

4

 
   
 
 

v  B1  

 Magnitude of Mnv is 3n B1 Must be a magnitude 
   5  

(iv) λ3  5λ2 + 28λ  66 = 0   
  M3 – 5M2 + 28M – 66I = 0 M1 Use of Cayley-Hamilton Theorem 
  M2 – 5M + 28I – 66M−1 = 0   

  M−1 = 
1

66
(M2 – 5M + 28I) M1 

A1 
Multiplying by M–1 and rearranging 
Must contain I 

   3  16
 

3 
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4 (i)  sinh t + 7 cosh t = 8   

  1
2 (et – e–t) + 7 × 1

2 (et + e–t) = 8 M1 Substituting correct exponential forms 

  4et + 3e–t = 8   
  4e2t − 8et + 3 = 0 M1 Obtaining quadratic in et 
  (2et − 1)(2et − 3) = 0 M1 Solving to obtain at least one value of et 

  et = 1
2  or 3

2  A1A1 Condone extra values 

  t = ln( 1
2 ) or ln( 3

2 ) A1 These two values o.e. only. Exact form 

   6  

(ii) 
dy

dx
= 2 sinh 2x + 14 cosh 2x or 8e2x + 6e−2x B1  

 2 sinh 2x + 14 cosh 2x = 16  sinh 2x + 7 cosh 2x = 8   

  2x = ln( 1
2 ) or ln( 3

2 )  x = 1
2 ln( 1

2 ) or 1
2 ln( 3

2 ) M1 
A1 

Complete method to obtain an x value 
Both x co-ordinates in any exact form 

 x = 1
2 ln( 1

2 )  y = −4 ( 1
2 ln( 1

2 ), −4)   

 x = 1
2 ln( 3

2 )  y = 4 ( 1
2 ln( 3

2 ), 4) B1 Both y co-ordinates 

 
dy

dx
= 0  2 sinh 2x + 14 cosh 2x = 0   

  tanh 2x = −7 or e4x = 3
4  etc. M1 Any complete method 

 No solutions because −1 < tanh 2x < 1 or ex > 0 etc. A1 (ag) www 

 

 

G1 
 
G1 
 

Curve (not st. line) with correct general 
shape (positive gradient throughout) 
Curve through (0, 1). Dependent on last 
G1 

   8  

(iii)    1
20

cosh 2 7sinh 2
a

x x dx   M1 Attempting integration 

  71 1
2 2 0
sinh 2 cosh 2

a
x x   

–40

–20

20

40

(0,1) 

2  A1 Correct result of integration 

   71
2 2sinh 2 cosh 2a a − 7

2 = 1
2    

  sinh 2a + 7 cosh 2a = 8   

  2a = ln( 1
2 ) or ln( 3

2 )  a = 1
2 ln( 1

2 ) or 1
2 ln( 3

2 ) M1 
Using both limits and a complete method 
to obtain a value of a 

  a = 1
2 ln( 3

2 ) ( 1
2 ln( 1

2 ) < 0) A1 
Must reject 1

2 ln( 1
2 ), but reason need not 

be given 
   4  18
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5 

 
5 (i) a = 1   

 

1.5

1

0.5

2

x

y

–6 –4 –2 2 4 6

G1  
 a = 2   

 

2

1

3

x

y

–6 –4 –2 2 4 6

–1 G1  
 a = 0.5   

 

1.5

1

0.5

2

x

y

–6 –4 –2 2 4 6

G1  
  M2 Evidence s.o.i. of further investigation 

(A) Loops when a > 1 A1  
(B) Cusps when a = 1 A1  

   7  
(ii) If x → −x, t → −t M1 Considering effect on t 

 but y(−t) = y(t) A1 (ag) Effect on y 
 Curve is symmetrical in the y-axis B1  
   3  

(iii) 
dy

dx
=

sin

1 cos

a t

a t
 M1 

A1 
Using Chain Rule 
 

 
dy

dx
= 0  a sin t = 0  t = 0 and ±π A1 Values of t 

 t = 0  T.P. is (0, 1 − a) A1  
 t = ±π  T.P. are (±π, 1 + a) A1 Both, in any form 
   5  

(iv) a = 2
 : both t = 2

 and 3
2
 give the point (π, 1) B1 (ag) Verification 

 Gradients are a and −a (or 2
 and − 2

 )   

 Hence angle is 2 arctan( 2
 ) ≈ 2.01 radians M1 

A1 
Complete method for angle 
Accept 115° (or 65°) 

   3  18
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