

**GCE** 

# **Chemistry B (Salters)**

**Advanced GCE** 

Unit F334: Chemistry of Materials

## Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

#### © OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

## MARK SCHEME

| Question | Answer                                                                                                                       | Mark | Guidance                                                                                                                                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (a)    | Two marking points from: non-toxic AW ✓  no harmful/severe side effects AW ✓  it works (better than standard medicines) AW ✓ | 2    | ALLOW it (compound OR dose) is safe  ALLOW it is effective                                                                                                                                                                      |
| (b) (i)  | HO OH ✓                                                                                                                      | 1    | ALLOW structural or skeletal formula for CH=CH skeletal structure must be correct and angular not linear  -OH groups must be in correct positions                                                                               |
| (ii)     | C=C bond ✓  two different groups on each carbon (of the C=C) ✓                                                               | 2    | DO NOT ALLOW 'double bond' alone  ALLOW both groups can be either side of the C=C (can be shown on a diagram)  ALLOW the active site has a specific shape  ALLOW they could fit into/bind with different active sites/receptors |

| Q | uesti | on   | Answer                                                                                                                                                                                                                 | Mark | Guidance                                                                                                                                                                                                                                                                                                                               |
|---|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | (c)   | (i)  | solvent should dissolve solute at higher temperatures AW ✓ solvent should dissolve (almost) no solute <b>OR</b> solute is insoluble at room/lower temperature AW ✓                                                     | 2    | ALLOW when warmed/heated  ACCEPT much less soluble  IGNORE any reference to crystallisation on evaporation ALLOW crystallises out at low temperatures                                                                                                                                                                                  |
|   | (d)   | (i)  | (resveratrol has) phenol/phenolic hydroxyl groups ✓  the –OH groups/phenols/resveratrol are acids/are acidic/ is neutralised by NaOH/react with NaOH or hydroxide ions ✓  ions form ✓  QWC: ions / salts are soluble ✓ | 4    | PLEASE ANNOTATE MARKS GIVEN WITH ✓  IGNORE phenol groups/phenols are soluble in water  ALLOW salt forms / formula(e) of ion(s)  ALLOW ions/salts interact/hydrogen bond/ion-dipole with water molecules                                                                                                                                |
|   | (d)   | (ii) | $C_{14}H_{12}O_3 + 30H^- \rightarrow C_{14}H_9O_3^{3-} + 3H_2O$ acceptable anion (see Guidance) $\checkmark$ all correct as above equation $\checkmark$                                                                | 2    | For first marking point: IGNORE any positive metal cation anion must be C <sub>14</sub> H <sub>9</sub> O <sub>3</sub> <sup>3-</sup> ALLOW C <sub>14</sub> H <sub>9</sub> (O <sup>-</sup> ) <sub>3</sub> or C <sub>14</sub> H <sub>10</sub> O <sub>3</sub> <sup>2-</sup> or C <sub>14</sub> H <sub>11</sub> O <sub>3</sub> <sup>-</sup> |
|   | (e)   | (i)  | C <sub>6</sub> H <sub>5</sub> O / C <sub>6</sub> H <sub>4</sub> OH ✓ positive charge on molecule ✓                                                                                                                     | 2    | <b>ALLOW</b> use of phenyl ring in formula for C <sub>6</sub> H <sub>4</sub> OH with + charge on a ring carbon ( <i>also</i> kekule formulae) If both ring and molecular formula given, <b>IGNORE</b> ring                                                                                                                             |
|   | (e)   | (ii) | OH ✓                                                                                                                                                                                                                   | 1    | DO NOT ALLOW if charged IGNORE – before OH indicating a group of atoms                                                                                                                                                                                                                                                                 |
|   | (f)   | (i)  | ester ✓                                                                                                                                                                                                                | 1    | ALLOW 'esther'                                                                                                                                                                                                                                                                                                                         |

| Q | Question |      | Answer                                                            | Mark | Guidance                                                                                                    |
|---|----------|------|-------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------|
| 1 | (f)      | (ii) | HO CH <sub>3</sub>                                                | 3    | If 2 or 3 correct –OH groups are ethanoylated then award 2 marks                                            |
|   |          |      | ОН                                                                |      | ALLOW skeletal formula for ethanoyl group                                                                   |
|   |          |      | H <sub>3</sub> C OH                                               |      |                                                                                                             |
|   |          |      | ethanoyl (CH₃C=O) group correct ✓                                 |      | ethanoyl group can be on either ring system                                                                 |
|   |          |      | phenyl ring attachment correct (via O− to a correct OH position)✓ |      | if on the <b>left hand side</b> of the double bond it can be in either of the <b>two</b> possible positions |
|   |          |      | the two unreacted OH groups in correct position ✓                 |      |                                                                                                             |
|   |          |      | Total                                                             | 22   |                                                                                                             |

| Q | uesti | on   | Answer                                                                                                                                                                        | Mark | Guidance                                                                     |
|---|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|
| 2 | (a)   | (i)  | Br <sup>-</sup> + O <sub>3</sub> → BrO <sub>3</sub> <sup>-</sup> -1 0 +5 -2  Br <sup>-</sup> -1 <b>AND</b> O <sub>3</sub> 0 $\checkmark$ Br +5 $\checkmark$ O -2 $\checkmark$ | 3    | SIGNS MUST BE BEFORE THE NUMBER                                              |
|   |       | (ii) | bromide (ion) / Br <sup>-</sup> ✓ EITHER:                                                                                                                                     | 2    | Mark independently  ALLOW bromine (1)- ion NOT bromine ion                   |
|   |       |      | (ozone / O₃ has been reduced) because the oxidation state of O has decreased or O has gained electrons ✓  OR                                                                  |      | ACCEPT ozone/O <sub>3</sub> has gone from 0 to -2/-6 or has gained electrons |
|   |       |      | (bromide (ion) / Br <sup>-</sup> has been oxidised) because the oxidation state of Br has increased or Br <sup>-</sup> has lost electrons✓                                    |      | ACCEPT bromine/Br has gone from -1 to +5 or has lost electrons               |

| Q | Question |       | Answer                                                                                                   | Mark | Guidance                                                                                                                                                                                                 |
|---|----------|-------|----------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (b)      | (i)   | Any one of the following methods:                                                                        | 3    | <b>DO NOT ALLOW</b> the 1 <sup>st</sup> marking point if answer contains 'change' The 'property' stated determines the method used <i>i.e. no mix and match allowed</i>                                  |
|   |          |       | Method 1 concentration ✓ iodine ✓ (by) titration (with thiosulfate/suitable reducing agent) ✓            |      | Method 1: 'redox titration' scores 2 marks for last 2 marking points if no 2 <sup>nd</sup> answer (substance) is given IGNORE any reference to a 'clock' reaction DO NOT ALLOW iodide ion/I <sup>-</sup> |
|   |          |       | Method 2 colour / absorbance ✓ iodine ✓ (by) colorimetry ✓                                               |      | Method 2: ALLOW concentration / transmission for first mark                                                                                                                                              |
|   |          |       | Method 3<br>acidity/pH ✓ H <sup>+</sup> ✓ (by) pH meter / titration ✓                                    |      | in adaption of <b>method 3: ALLOW</b> concentration (of H <sup>+</sup> ) <b>OR</b> conductivity for <b>first mark</b>                                                                                    |
|   |          | (ii)  | BrO <sub>3</sub> ¯ = 0 ✓                                                                                 | 3    |                                                                                                                                                                                                          |
|   |          |       | I⁻=2 ✓                                                                                                   |      |                                                                                                                                                                                                          |
|   |          |       | H <sup>+</sup> = 1 ✓                                                                                     |      |                                                                                                                                                                                                          |
|   |          | (iii) | $k = 2.40 \times 10^{-3} / (0.20 \times 0.10 \times (0.10)^2) \checkmark$<br>= 12 (to 2 sf) $\checkmark$ | 3    | REMEMBER: if answer = 12 then 2 marks awarded irrespective of working 12.0 scores only 1 mark                                                                                                            |
|   |          |       |                                                                                                          |      | Ecf for 2 <sup>nd</sup> mark if sf correct                                                                                                                                                               |
|   |          |       | mol <sup>-3</sup> dm <sup>+9</sup> s <sup>-1</sup> ✓                                                     |      | NO ECF for UNITS ALLOW numbers only for positive indices ALLOW terms in any order e.g. dm <sup>9</sup> mol <sup>-3</sup> s <sup>-1</sup>                                                                 |

| Q | Question |      | Answer                                                                                                                                                                                                                          | Mark | Guidance                                                                               |
|---|----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------|
| 2 | (b)      | (iv) | as reactants are used up/as their concentration changes, the rate will change/alter/decrease/get slower ✓  concentrations remain (almost) constant / do not change or rate measured will be for the initial concentrations AW ✓ | 2    | DO NOT ALLOW constant concentration linked to an excess of reactant(s) (this is a CON) |
|   |          |      | Total                                                                                                                                                                                                                           | 16   |                                                                                        |

| Q | uesti | on   | Answer                                                                                                 | Mark | Guidance                                                                                                          |
|---|-------|------|--------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------|
| 3 | (a)   | (i)  | alkene / carbon-carbon double bond ✓                                                                   | 2    | double bond alone does <b>NOT</b> score                                                                           |
|   |       |      | amide ✓                                                                                                |      | DO NOT ALLOW secondary amide                                                                                      |
|   |       |      |                                                                                                        |      | alkene + amine + ketone(carbonyl) = 1 mark                                                                        |
|   |       | (ii) | $C_2H_3CONH_2 + H_2O + H^+ \rightarrow C_2H_3COOH + NH_4^+ \checkmark\checkmark$                       | 4    | 1 mark for each correct product                                                                                   |
|   |       |      | $C_2H_3CONH_2 + OH^- \rightarrow C_2H_3COO^- + NH_3 \checkmark \checkmark$                             |      | DO NOT ALLOW NH <sub>4</sub> OH H <sub>2</sub> O as a product in 2 <sup>nd</sup> equation means max of 3 marks    |
|   | (b)   | (i)  | Propylamine / 1-aminopropane ✓                                                                         | 1    | ALLOW 1-propylamine DO NOT ALLOW aminopropane                                                                     |
|   |       | (ii) | Any two of the following three answers:                                                                | 2    |                                                                                                                   |
|   |       |      | NO peak at about 1620-1680 cm <sup>-1</sup> indicates NO C=C / alkene present ✓                        |      | ALLOW correct wavenumbers without units and a single wavenumber value in the correct range                        |
|   |       |      | NO peak at about 1630-1700 cm <sup>-1</sup> indicates NO C=O / amide present ✓                         |      |                                                                                                                   |
|   |       |      | NO peak at 3500 cm <sup>-1</sup> indicates amide gone ✓                                                |      | <b>ALLOW</b> peak at 3300-3500 cm <sup>-1</sup> indicates <b>amine</b> (indicates N-H bond alone is insufficient) |
|   | (c)   | (i)  | (NH₂ group) has a <b>lone pair</b> (of electrons) ✓ which can <b>accept a proton</b> /H <sup>+</sup> ✓ | 2    |                                                                                                                   |

| Q | uesti | on    | Answer                                                 | Mark | Guidance                                                                                                                    |
|---|-------|-------|--------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|
| 3 | (c)   | (ii)  | $H_2N$ $NH_3^+$ $O^-$                                  | 1    | TAKE CARE + charge has to be on the AMINE group not the AMIDE                                                               |
|   |       | (iii) | non superimposable ✓ mirror image ✓                    | 2    |                                                                                                                             |
|   | (d)   | (i)   | UUA ✓                                                  | 1    |                                                                                                                             |
|   |       | (ii)  | Ala-Asn-Val  2 of the 3 acids correct ✓  all correct ✓ | 2    | ALLOW full names for Ala-Asn-Val  Ala, Asn and Val MUST be in this order IGNORE lack of dashes and/or small initial letters |
|   |       |       | Total                                                  | 17   |                                                                                                                             |

| Q | uesti | on    | Answer                                                                                                                    | Mark | Guidance                                                                                                                                                                                                           |
|---|-------|-------|---------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (a)   |       | $\begin{array}{c} H \\ \downarrow \\ CH \\ \downarrow \\ CH_2 \end{array}$                                                | 2    | 2 marks for correct skeletal formula/structural formula ALLOW if –OH attached to C=O rather than –O–H  HO  1 mark for correct structural formula with acid group as –COOH OR a correct dimer etc.  IGNORE brackets |
|   | (b)   | (i)   | addition ✓  C=C bonds on <b>side chains</b> (in different polymer chains) break/open up and form a (covalent) bond/link ✓ | 2    | IGNORE polymerisation, electrophilic, radical nucleophilic is a CON                                                                                                                                                |
|   |       | (ii)  | an alcohol group present ✓  any correctly drawn formula with <b>two</b> hydroxyl / -OH groups ✓  condensation ✓           | 3    | e.g. HOCH <sub>2</sub> CH <sub>2</sub> OH  ACCEPT the two OH groups attached to the same carbon  IGNORE polymerisation ALLOW esterification ALLOW addition AND elimination                                         |
|   |       | (iii) | (addition) so no atoms/products are wasted <b>OR</b> only ONE product ORA ✓                                               | 1    | ORA more than ONE product / water is formed in Method 2 ALLOW by-product or co-product formed in Method 2 IGNORE values for atom economy                                                                           |

| Q | uesti | on    | Answer                                                                                                                                                                                                                       | Mark | Guidance                                                                                                                              |
|---|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (c)   | (i)   | sodium / potassium hydroxide ✓                                                                                                                                                                                               | 1    | IGNORE strength / alkali ALLOW NaOH / KOH ALLOW hydroxide ALLOW a given metal carbonate. ALLOW suitable metals e.g. Na, K, Mg, etc.   |
|   |       | (ii)  | H—————————————————————————————————————                                                                                                                                                                                       | 1    | ALLOW delocalised carboxylate ion IGNORE any added metal ions ALLOW -CH <sub>3</sub>                                                  |
|   |       | (iii) | crosslinks will prevent <b>chains moving apart</b> (sufficiently to dissolve) / held in position (so it does not dissolve) AW ✓ without crosslinks water will force polymer chains apart (and so polymer will dissolve) AW ✓ | 2    | <b>ALLOW</b> without crosslinks water will form intermolecular bonds (hydrogen bonds) with chains/molecules/polymer/COOH or OH groups |
|   | (d)   | (i)   | it increased as water was absorbed AW ✓                                                                                                                                                                                      | 1    | Increase alone is insufficient an explanation is required                                                                             |

| Q | Question |      | Answer                                                                                                                                                  | Mark | Guidance                                                                                                                                      |
|---|----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (d)      | (ii) |                                                                                                                                                         | 6    | PLEASE ANNOTATE MARKS GIVEN WITH ✓                                                                                                            |
|   |          |      | Any 6 marking points from the following 7:                                                                                                              |      |                                                                                                                                               |
|   |          |      | 1. Select orange/red/complementary colour for filter ✓                                                                                                  |      | DO NOT ALLOW 'suitable' filter                                                                                                                |
|   |          |      | 2. Make up/use dye solutions of different known/standard concentrations ✓                                                                               |      | ALLOW any shade of orange or red                                                                                                              |
|   |          |      | Measure the absorbance/transmission/transmittance of the dye solutions of different known concentrations                                                |      |                                                                                                                                               |
|   |          |      | OR absorbance/transmission/transmittance of the blue dye solution AW ✓                                                                                  |      | QWC: This is not an extra mark absorbance/transmission/transmittance MUST be spelt                                                            |
|   |          |      | <b>4. Plot calibration graph</b> of <u>absorbance( or alternative see 3 above) readings v concentration</u> ✓                                           |      | correctly <b>once</b> to award one of the marking points <b>3-7</b> as the QWC mark max mark <b>without correct spelling</b> is thus <b>5</b> |
|   |          |      | 5. Add the polymer (known mass) to the dye solution and measure the new absorbance ✓                                                                    |      | Annotate the QWC mark by ✓ on the correctly spelt word                                                                                        |
|   |          |      | <b>6. Repeat/take</b> measurements until no further change in absorbance/transmission / over a period of time AW ✓                                      |      | If no correct spelling indicate with <b>X</b> on a mis-spelt word                                                                             |
|   |          |      | 7. Use the calibration curve to find out how the concentration of the blue dye changes / to find the concentration of the blue dye at different times ✓ |      |                                                                                                                                               |

| Q | uestio | n Answer                                                                                                        | Mark | Guidance |
|---|--------|-----------------------------------------------------------------------------------------------------------------|------|----------|
| 4 | (e)    | One marking point from:                                                                                         | 1    |          |
|   |        | Used packaging consists of many different polymers which need to be <u>sorted</u> / <u>separated</u> first AW ✓ |      |          |
|   |        | Lots of <b>other compounds/additives in plastics</b> used for packaging need to be <b>removed</b> AW ✓          |      |          |
|   |        | Can wash/separate polymer from nappies and then heat to remove absorbed water AW ✓                              |      |          |
|   |        | Total                                                                                                           | 20   |          |

| Q | Question |       | Answer                                                                                                                                                                                                                                                    |   | Guidance                                                                                                                                                         |
|---|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)      | (i)   | 1.3(0) V ✓                                                                                                                                                                                                                                                | 1 | IGNORE sign                                                                                                                                                      |
|   |          | (ii)  | concentration of OH⁻ ions in the Ni/Cd <u>battery</u> is greater than/not 1.0 mol dm⁻³ OR the Ni/Cd <u>battery</u> is not at standard conditions ✓ OR the <u>measured</u> voltage is not done at standard conditions                                      | 1 | ALLOW temperature change  It must be clear that it is the voltage of the battery was not measured at standard conditions rather than the data given in the table |
|   |          | (iii) | $Ni(OH)_2 + Cd(OH)_2 \rightarrow NiO_2 + Cd + 2H_2O \checkmark$                                                                                                                                                                                           | 1 | IGNORE state symbols ALLOW if 2OH⁻ is inserted on each side of the equation                                                                                      |
|   | (b)      |       | (it is 'green' because it forms iron(III) oxide/rust as) product which is non-polluting / non toxic / not harmful (to the environment) ✓  they can be put in landfill sites / be more easily disposed of / they do not need special methods of disposal ✓ | 2 | IGNORE any reference to Ni/Cd                                                                                                                                    |

| Question |     | on   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5        | (c) |      | 1. moles of NO <sub>2</sub> <sup>-</sup> in 1000 dm <sup>3</sup> = <b>6.0</b> x <b>10</b> <sup>-6</sup> x <b>10</b> <sup>3</sup> = 6.0 x 10 <sup>-3</sup> 2. moles of K <sub>2</sub> FeO <sub>4</sub> required = 6.0 x 10 <sup>-3</sup> x <b>2/3</b> = 4.0 x 10 <sup>-3</sup> 3. $M_r$ of K <sub>2</sub> FeO <sub>4</sub> = <b>198(.0)</b> $\checkmark$ 4. mass of K <sub>2</sub> FeO <sub>4</sub> required = 4.0 x 10 <sup>-3</sup> x 198.0 = <b>0.79(2)</b> | -3 | The marks are awarded for the working out given in bold.  IF FINAL ANSWER IS INCORRECT PLEASE ANNOTATE MARKS GIVEN WITH ✓  1. moles of nitrate = correct concentration x correct volume in dm³  2. moles of ferrate (K₂FeO₄) = 2/3 x moles of nitrate  3. M <sub>r</sub> of ferrate (K₂FeO₄) correct to at least 3 sig figs  4. mass of ferrate (K₂FeO₄) = ferrate (K₂FeO₄) in 250 cm³ x 198  Do not allow 0.8 g  ecf from 2 and 3 |
|          | (d) | (i)  | shape of ion  Coordination number of Fe  Colour of ion in water  Octahedral  6 ✓  Yellow or yellow-brown  ✓                                                                                                                                                                                                                                                                                                                                                   | 3  | ALLOW orange or orange-brown DO NOT ALLOW red / brown / red-brown / rusty-brown / rust coloured                                                                                                                                                                                                                                                                                                                                    |
|          |     | (ii) | Fe <sup>3+</sup> (aq) + 3OH <sup>-</sup> (aq) → Fe(OH) <sub>3</sub> (s)✓ species correct and balanced ✓ state symbols correct ✓                                                                                                                                                                                                                                                                                                                               | 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Q | Question |      | Answer                 |    | Mark | Guidance                                              |
|---|----------|------|------------------------|----|------|-------------------------------------------------------|
| 5 | (d)      | (iii | 3d<br>Fe <sup>3+</sup> | 4s | 1    | IGNORE direction of arrows ALLOW single headed arrows |
|   |          |      | Total                  |    | 15   |                                                       |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

## **OCR Customer Contact Centre**

## 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

**OCR (Oxford Cambridge and RSA Examinations)** 

**Head office** 

Telephone: 01223 552552 Facsimile: 01223 552553

