edexcel

Mark Scheme (Results)
November 2012

GCSE Mathematics (2MB01) Higher 5MB3H (Calculator) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG033858
All the material in this publication is copyright
© Pearson Education Ltd 2012

NOTES ON MARKI NG PRI NCI PLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
11 Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers
Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

```
Guidance on the use of codes within this mark scheme
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

5MB3H_01					
Question		Working	Answer	Mark	Notes
1		$\begin{aligned} & 3 x>11 \\ & x>\frac{11}{3} \text { or } 3.66 \text {.. } \\ & \text { OR } \\ & (16-5) \div 3 \\ & \frac{11}{3} \text { or } 3.66 . . \end{aligned}$	4	3	M1 $3 x>11$ or $3 x>16-5$ or $3 x+5-5>16-5$ A1 $\frac{11}{3}$ or $3.6(66 .$.) or 3.7 (Accept $=$ or \geq in place of $>$) B1 ft OR M1 $(16-5) \div 3$ A1 $\frac{11}{3}$ or $3.6(66 .$.) or 3.7 B1 ft
2		$\begin{aligned} & x+x+4+x-2=26 \\ & 3 x+2=26 \\ & 3 x=24 \\ & x=8 \end{aligned}$ OR $\begin{aligned} & 26-4=22 \\ & 22+2=24 \\ & 24 \div 3 \end{aligned}$	8	4	M1 $x+x+4$ or $x+x-2$ or $x+4+x-2$ or "expression in x " $+x+4=26$ or "expression in x " $+x-2=26$ M1(dep) " 3 " $x+$ "2" $=26$ M1 "3" $x=26$ - "2" A1 cao OR M1 $26-4$ or $26+2$ M1 " 22 " +2 or " 28 " - 4 M1 " 24 " $\div 3$ A1 cao OR M3 $6+8+12$ seen (M2 three ages that meet the criteria $x, x+4$ and $x-2$) (M1 two trials of three ages added or a set of three ages that would add to 26) A1 cao

5MB3H_01					
Question		Working	Answer	Mark	Notes
3		$\pi \times 20$	62.8 cm	3	M1 $\pi \times 20$ or $\pi \times 19.5$ or $\pi \times 19.95$ A1 62.8-63 B1(indep) for units consistent with answer
4*		$\begin{aligned} & 1.22+0.96+2.42=4.60 \\ & 1.15+0.86+2.28=4.29 \\ & 4.60 \times 0.95=4.37 \\ & 4.37>4.29 \\ & \text { OR } \\ & 1.22 \times 0.95=1.159 \\ & 0.96 \times 0.95=0.912 \\ & 2.42 \times 0.95=229.9 \\ & 1.159+0.912+2.299= \\ & 4.37 \\ & \text { OR } \\ & 1.22 \times 0.95=1.159 \\ & 0.96 \times 0.95=0.912 \\ & 2.42 \times 0.95=229.9 \\ & 1.159>1.15 \text { and } \\ & 0.912>0.86 \text { and } \\ & 2.229>2.28 \end{aligned}$	no 5\% reduction will not be enough	3	M1 $1.22+0.96+2.42$ or 4.60 or $1.15+0.86+2.28$ or 4.29 A1 4.37 and 4.29 C1 (dep on M1) ft clear statement of comparison based on their answers OR M1 1.22×0.95 oe or 0.96×0.95 oe or 2.42×0.95 oe A1 4.37 and 4.29 C1 (dep on M1) ft clear statement of comparison based on their answers OR M1 1.22×0.95 oe or 0.96×0.95 oe or 2.42×0.95 oe A1 115.9 or 116 or 115 and 91.2 or 91 or 92 and 229.9 or 229 or 230 C1(dep on M1) ft clear statement of comparison based on their answers NB Allow working throughout in pence or pounds

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{5MB3H_01} \\
\hline \multicolumn{2}{|r|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 5 \& \& \begin{tabular}{l}
\[
64 \div 10=6.4
\] \\
arc of radius 6.4 cm drawn with cross at \(70^{\circ}\) OR
\[
64 \div 10=6.4
\] \\
line drawn at \(70^{\circ}\) with cross at 6.4 cm
\end{tabular} \& Town B marked \& 2 \& B2 town \(B\) marked in correct place (B1 bearing \(070^{\circ} \pm 2^{\circ}\) or \(6.4 \pm 0.2 \mathrm{~cm}\)) \\
\hline 6 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 6 p-15=21 \\
\& 6 p=36
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& 2 p-5=7 \\
\& 2 p=12
\end{aligned}
\]
\[
\begin{aligned}
\& 9 x-11=5 x+7 \\
\& 9 x-5 x=7+11 \\
\& 4 x=18
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
6 \\
4.5
\end{tabular} \& 3

3 \& | M1 $3 \times 2 p-3 \times 5$ or $6 p-15$ |
| :--- |
| M1 "6"p -" $15 "+" 15 "=21+" 15 "$ |
| A1 cao |
| OR |
| M1 $2 p-5=21 \div 3$ |
| M1 $2 p-5+5=5+" 7 "$ |
| A1 cao |
| M1 correct method to isolate either the term in x or the numerical term e.g $9 x-5 x-11=5 x-5 x+7$ or $9 x=5 x+18$ |
| A1 $4 x=18$ or $-18=-4 x$ |
| A1 4.5 oe |

\hline 7 \& \& \[
$$
\begin{aligned}
& 9^{2}+14^{2}=81+196= \\
& 277 \\
& A B=\sqrt{277}
\end{aligned}
$$

\] \& 16.6 \& 3 \& | M1 $9^{2}+14^{2}$ or $81+196$ or 277 |
| :--- |
| M1 $\sqrt{277}$ or $\sqrt{81+196}$ or |
| A1 16.6-16.644 |

\hline
\end{tabular}

5MB3H_01					
Question		Working	Answer	Mark	Notes
8*		Paint for You $7.5 \div 2.5=3$ tins $3 \times 8.35=£ 25.05$ $25.05 \times 1.20=£ 30.06$ Paul's paints $7.5 \div 0.75=10 \text { tins }$ $10 \times 3.15=£ 31.50$ OR Paint for You $\begin{aligned} & 8.35 \times 1.20=£ 10.02 \\ & 10.02 \div 2.5=£ 4.008 \text { per } \end{aligned}$ litre Paul's Paints $3.15 \div 0.75=£ 4.20 \text { per }$ litre There is no wastage	Paint for You (2.5 litre tins)	4	M1 $7.5 \div 2.5$ or 3 seen or $7.5 \div 0.75$ or 10 seen M1 $8.35 \times 1.2(0)$ oe or 10.02 or " 25.05 " $\times 1.2(0)$ oe M1 " 3 " $\times 8.35$ or " 3 " $\times 10.02$ " and " 10 " $\times 3.15$ C1 for both 30.06 and 31.5(0) and correct conclusion OR M1 $7.5 \div 2.5$ or 3 seen or $7.5 \div 0.75$ or 10 seen M1 $8.35 \times 1.2(0)$ oe or 10.02 or $8.35 \div 2.5 \times 1.2(0)$ oe or $3.34 \times$ $1.2(0)$ oe M1 " 10.02 " $\div 2.5$ or 4.008 or 4.01 and $3.15 \div 0.75$ or 4.20 C1 for both 4.008 (or 4.01) and 4.2(0) and correct conclusion OR M1 $7.5 \div 2.5$ or 3 seen or $7.5 \div 0.75$ or 10 seen M1 $8.35 \times 1.2(0)$ oe or 10.02 M1 $2.5 \div 0.75$ and " 10.02 " $\div 3.15$ C1 for both 3.3(3.. and 3.1(8...) and correct conclusion OR any equivalent process using correct methods which leads to two values that can be compared

5M	_01					
Question		Working		Answer	Mark	Notes
10	(a)			reflected shape	2	B2 correct triangle drawn with vertices $(4,4),(5,4)$ and $(5,6)$ (B1 for a correct reflection in $x=a$)
	(b)			rotation centre $(0,1)$ 90° anti-clockwise or 270° clockwise	3	B1 rotation B1 about the centre $(0,1)$ B1 90° anticlockwise or 270° clockwise NB If more than one transformation seen then B0
11		x	$x^{3}-x$	3.3	4	B2 for trial $3.2 \leq x \leq 3.3$
		3.1	26.(691)			(B1 for trial $3<x<4$)
		3.2	29.(568)			B1 for different trial $3.25 \leq x<3.3$
		3.3	32.(637)			B1 cao (dep on at least one previous B1)
		3.4	35.(904)			
		3.5	$39 .(375)$			Accept trials correct to the nearest whole number (rounded or
		3.6	43.(056)			truncated) if the value of x is to 1 dp but correct to 1 dp (rounded or
		3.7	46.(953)			truncated) if the value of x is to 2 dp
		3.8	51.(072)			
		3.9	55.(419)			
		3.25	31.(078)			
		3.26	31.3(85)			
		3.27	31.6(95)			
		3.28	32.0(07)			
		3.29	32.3(21)			

5MB3H_01					
Question		Working	Answer	Mark	Notes
12		$\begin{aligned} & 1 / 2 \text { litre }=500 \mathrm{ml} \\ & 500=\pi \times 4^{2} \times h \\ & h=500 \div\left(\pi \times 4^{2}\right) \end{aligned}$	9.95	5	B1 $1 / 2$ litre $=500 \mathrm{ml}$ or 500 seen M1 $\pi \times 4^{2} \times h(=50.2 . \times . h)$ or $\pi \times 4^{2}(=50.2 .$. M1 " 500 " $=\pi \times 4^{2} \times h$ oe M1 $(h=)$ " 500 " $\div\left(\pi \times 4^{2}\right)$ oe A1 9.9-10.0
13		$\begin{aligned} & 168000=112 \% \text { (of } \\ & \text { original price) } \\ & 168000 \div 112 \times 100 \end{aligned}$	150000	3	M1 $168000=112 \%$ or 112 or $100+12$ or 1.12 or $1+0.12$ with an intention to divide M1 $168000 \div 1.12$ or $16800 \div 112 \times 100$ A1 cao

5MB3H_01					
Question		Working	Answer	Mark	Notes
14		$\begin{aligned} & A B=5 \sin 36=\frac{5}{A D} \\ & A D=\frac{5}{\sin 36} \\ & \text { Or } \\ & \sin 36=\frac{5}{B C} \\ & B C=\frac{5}{\sin 36} \\ & A D=B C \\ & \text { OR } \\ & \cos 54=\frac{5}{B C} \\ & B C=\frac{5}{\cos 54} \end{aligned}$	8.51	4	B1 $A B=5$ M1 $\sin 36=\frac{5}{A D}$ or $\frac{\sin 36}{5}=\frac{\sin 90}{A D}$ M1 $A D=\frac{5}{\sin 36}$ or $A D=\frac{5 \sin 90}{\sin 36}$ A1 $8.5-8.51$ OR M1 $\sin 36=\frac{5}{B C}$ or $\frac{\sin 36}{5}=\frac{\sin 90}{B C}$ M1 $B C=\frac{5}{\sin 36}$ or $B C=\frac{5 \sin 90}{\sin 36}$ B1 $A D==^{\prime} B C^{\prime}$ A1 $8.5-8.51$ OR B1 angle $D C B=54$ or angle $D B C=36$ M1 $\cos 54=\frac{5}{B C}$ M1 $B C=\frac{5}{\cos 54}$ A1 $8.5-8.51$ NB Other methods such as tan + Pythagoras must be complete methods and will earn M2

5MB3H_01					
	tion	Working	Answer	Mark	Notes
15		$m^{2}=\frac{k}{6}$	$m=\sqrt{\frac{k}{6}}$	2	$\begin{aligned} & \text { M1 } m^{2}=\frac{k}{6} \text { or } \frac{6 m^{2}}{6}=\frac{k}{6} \text { or } \sqrt{6 m^{2}}=\sqrt{k} \text { or } \sqrt{6} m=\sqrt{k} \\ & \text { A1 } m=\sqrt{\frac{k}{6}} \text { or } m= \pm \sqrt{\frac{k}{6}} \text { or } m=-\sqrt{\frac{k}{6}} \end{aligned}$
16	(a) (b)	$500 \times(1.025)^{12}$	$\begin{gathered} 2.5 \\ 672.44 \end{gathered}$	2	$\begin{aligned} & \text { B1 cao } \\ & \text { M1 ft } 500 \times(" 1.025 \text { ") })^{12} \text { or } 1.34 \ldots \text { seen } \\ & \text { A1 } 672 \text { or } 672.44 \end{aligned}$
17	(a) (b)		$\begin{aligned} & 5.5 \times 10^{4} \\ & 1800000 \end{aligned}$		B1 cao M1 1.8×10^{n} or $18(0 \ldots .$.$) or 18 \times 10^{n}$ or $3600000000 \times 0.00005$ A1 cao
18	(a)	$\binom{4}{8}-\binom{2}{4}$	$\binom{2}{4}$	2	M1 $\overrightarrow{O Q}-\overrightarrow{O P}$ in co-ordinates or vectors or $\binom{2}{y}$ or $\binom{x}{4}$ A1 cao [SC If no marks then B1 $\binom{4}{2}$ or $\binom{-2}{-4}$

5MB3H_01					
Question		Working	Answer	Mark	Notes
18	(b)	$\begin{aligned} & M=(3,6) \\ & N=(4,8)+1 / 2(6,-4)=(7, \end{aligned}$ 6) $\overrightarrow{M N}=\binom{7}{6}-\binom{3}{6}$ $\begin{aligned} & \mathrm{OR} \\ & \overrightarrow{M N}=1 / 2 \overrightarrow{P R} \\ & \overrightarrow{P R}=\binom{6}{-4}+\binom{2}{4}=\binom{8}{0} \end{aligned}$ OR $\begin{aligned} & \overrightarrow{M N}=1 / 2 \overrightarrow{P Q}+1 / 2 \overrightarrow{Q R} \\ & \overrightarrow{M N}=1 / 2\binom{2}{4}+1 / 2\binom{6}{-4} \end{aligned}$	$\binom{4}{0}$	3	B1 $M=(3,6)$ M1 $N=(4,8)+1 / 2(6,-4)$ or $(7,6)$ or $\overrightarrow{M N}=\binom{7}{6}-\binom{3}{6}$ A1 cao OR B1 $\overrightarrow{M N}=1 / 2 \overrightarrow{P R}$ M1 ft $\overrightarrow{P R}=\binom{6}{-4}+\binom{\prime 2}{\prime 4}$ or $\binom{8}{0}$ A1 cao OR B1 $\overrightarrow{M N}=1 / 2 \overrightarrow{P Q}+1 / 2 \overrightarrow{Q R}$ M1 ft $\overrightarrow{M N}=1 / 2\left(\begin{array}{l}\prime 2 \\ \prime \\ \prime\end{array}\right)+1 / 2\binom{6}{-4}$ A1 cao
19	(a) (b)	$\begin{aligned} & 1 / 2 \times 9.2 \times 14.6 \times \sin 64 \\ & \\ & A B^{2}=9.2^{2}+14.6^{2}-2 \times 9.2 \\ & \times 14.6 \times \cos 64 \\ & A B^{2}=297.8-268.64 \cos \\ & 64^{\circ}=297.8- \\ & 268.64 \times 0.43837 . . \\ & A B^{2}=297.8-117.76 . . \\ & A B^{2}=180.03 \\ & A B=\sqrt{ } 180.03 \end{aligned}$	60.4 13.4	2 3	M1 $1 / 2 \times 9.2 \times 14.6 \times \sin 64$ A1 60.3-60.4 M1 $9.2^{2}+14.6^{2}-2 \times 9.2 \times 14.6 \times \cos 64^{\circ}$ M1 (dep) for correct order of evaluation e.g. 297.(8) - 117.(7..) A1 13.4-13.42

5MB3H_01					
Question		Working	Answer	Mark	Notes
20		$\begin{aligned} & \text { SF }=\left(x^{2}-1\right) \div 2(x-1) \\ & =(x-1) \times(x+1) \div 2(x- \end{aligned}$ 1) $=1 / 2(x+1)$ Area $D E F=4 \times$ $\begin{aligned} & {\left[\frac{1}{2}(x+1)\right]^{2}} \\ & =(x+1)^{2} \\ & =x^{2}+2 x+1 \end{aligned}$		4	M1 $\left(x^{2}-1\right) \div 2(x-1)$ or $\mathrm{SF} \times 2(x-1)=\left(x^{2}-1\right)$ M1 $1 / 2(x+1)$ or $(x-1) \times(x+1) \div 2(x-1)$ M1 $4 \times\left(\frac{x+1}{2}\right)^{2}$ or $4 \times\left(\frac{x^{2}-1}{2(x-1)}\right)^{2}$ C 1 fully correct convincing process OR M1 $\left(x^{2}+2 x+1\right) \div 4$ M1 $\sqrt{\left(x^{2}+2 x+1\right) \div 4}$ or $\sqrt{(x+1)(x+1) \div 4}$ or $(x+1) \div 2$ M1 $2(x-1) \times(x+1) \div 2$ C1 fully correct convincing process
21		$\begin{aligned} & x^{2}+(2 x+5)^{2}=25 \\ & x^{2}+4 x^{2}+20 x+25=25 \\ & 5 x^{2}+20 x=0 \\ & 5 x(x+4)=0 \\ & x=0, x=-4 \\ & y=2 \times 0+5 \\ & y=2 \times-4+5 \end{aligned}$	$\begin{gathered} x=0 \\ y=5 \\ \text { or } \\ x=-4, \\ y=-3 \end{gathered}$	6	M1 $x^{2}+(2 x+5)^{2}(=25)$ $\mathrm{A} 1 x^{2}+4 x^{2}+10 x+10 x+25(=25)$ M1 Use of factorisation or correct substitution into quadratic formula or completing the square to solve an equation of the form $\begin{aligned} & a x^{2}+b x+c=0, a \neq 0 \\ & \mathrm{~A} 1 x=0, x=-4 \end{aligned}$ M1 substitution of an x value into an original equation A1 $y=5, y=-3$ correctly matched to x values SC (If M0M0M0 then B1 for one pair (x, y) of correct answers)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG033858 November 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

