advancing learning, changing lives

Mark Scheme (Results)
November 2010

CCSE

GCSE Mathematics (Modular) 5MB2H
Unit 2 - Higher

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 08445760027 , or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

NOTES ON MARKING PRINCIPLES

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

7 With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme

```
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

5MB2H_O1				
Question	Working	Answer	Mark	Notes
1	$140 \div(3+4)(=20)$ $\text { " } 20 \text { " } \times 4$	80	2	M1 for $140 \div(3+4)$ or 20 or $\frac{4}{7} \times 140$ A1 cao
2 (a) (b) (c)	$x^{2}+-2 x+7 x-14$	8bc $6 w-15 t$ $x^{2}+5 x-14$	1 2 2	B1 cao $M 1$ for $3 \times 2 w-3 \times 5 t$ or $6 w$ or $-15 t$ A1 cao M1 for all 4 terms correct with or without signs or 3 out of no more than four terms correct with signs or $x(x-2)+7(x-2) \text { or } x(x+7)-2(x+7)$ A1 cao
3	$80 \div 100 \times 15$	12	2	M1 for $80 \div 100 \times 15$ or 8 and 4 seen or correct method to find 10% and 5% of 80 eg $80 \div 100 \times 10$ and $80 \div 100 \times 5$ oe A1 cao

5MB2H_01				
Question	Working	Answer	Mark	Notes
4	$\begin{aligned} & \begin{array}{l} B F D=42^{\circ} \\ H F B=110^{\circ} \\ 110-42 \end{array} \end{aligned}$	68	3	M1 for $E D C=42$ or $D H F=180-110$ M1 for 180-42-70 A1 cao or $M 1$ for $B F D=42^{\circ}$ or $H F B=110^{\circ}$ M1 for 110-42 A1 cao or M1 for $A F H=180-110=70$ M1 for $180-70-42=68$ A1 cao
5		24	2	M1 for list of at least 3 multiples of 8 and 2 multiples of 12 or correct method to write either 8 or 12 as product of prime factors A1 cao
6	$\begin{aligned} & 180-140(=40) \\ & 360 \div 40 " \end{aligned}$	9	3	M1 for $180-140(=40)$ M1 (dep) for 360 $\div 40$ " A1 cao

5MB2H_01				
Question	Working	Answer	Mark	Notes
8	$\begin{aligned} & 12 \times 7=84 \\ & 84-\frac{1}{2}(3 \times 6) \\ & 75 \div 32 \end{aligned}$	3	4	M1 for $12 \times 7(=84)$ M1 for " 84 " $-\frac{1}{2}(3 \times 6)(=75)$ M1 for "area" $\div 32$ or $(32,64)$,96 seen with "area" calculated. A1 cao (dep on all M marks) or M1 for $12 \times 4(=48)$ M1 for " 48 " $+\frac{1}{2}(12+6) \times 3$ M1 for "area" $\div 32$ or $(32,64)$,96 seen with "area" calculated. A1 cao (dep on all M marks) M1 for $6 \times 3+\frac{1}{2}(3 \times 6)(=27)$ M1 for " 27 " $+12 \times 4$ M1 for "area" $\div 32$ or $(32,64)$,96 seen with "area" calculated. A1 cao (dep on all M marks)

5MB2H_O1				
Question	Working	Answer	Mark	Notes
9	$\begin{aligned} & 3600 \times 4=14400 \\ & \frac{2}{5}=40 \% \\ & \frac{1}{4}=25 \\ & 30+40+25=95 \% \\ & \text { Saved } 5 \% \\ & 10 \% \text { of } 14400=1440 \\ & 5 \% \text { Of } 14400=1440 \div 2 \end{aligned}$	£720	5	M1 $3600 \times 4(=14400)$ B1 for $\frac{2}{5}=40 \%$ or $\frac{1}{4}=25$ M1 for $30+40+25$ or 95 or 5 M1 for complete method to find 5% of 14400 A1 cao or M1 for $3600 \times 4(=14400)$ B1 for $30 \%=\frac{3}{10}$ oe M1 $\frac{3}{10}+\frac{2}{5}+\frac{1}{4}$ or $\frac{19}{20}$ or $\frac{1}{20}$ M1 for complete method to find $\frac{1}{20}$ of 14400 A1 cao or M1 $3600 \times 4(=14400)$ M1 for 0.3×14400 oe $(=4320)$ M1 for $\frac{2}{5} \times 14400$ oe $(=5760)$ M1 14400-3600-4320-5760 A1 cao SC if no other marks awarded M1 for $0.3 \times 3600(=1080)$ M1 for $\frac{2}{5} \times 3600(=14400)$

5MB2H_01				
Question	Working	Answer	Mark	Notes
13	0.5×10^{6}	5×10^{5}	2	M1 for 0.5×10^{6} or 500000 or $2.5 \div 0.5 \times 10^{6}$ or $0.5 \times 10^{9-3}$ Or $2500000000 \div 5000$ A1 cao
14*	$\begin{aligned} & (2 x-2)(2 x+1) \\ & +\frac{1}{2}(2 x-2)((3 x+5)-(2 x+1)) \\ & 4 x^{2}-2 x-2 \\ & +x^{2}+4 x-x-4 \\ & =5 x^{2}+x-6 \end{aligned}$ Or $\begin{aligned} & (2 x-2)(3 x+5) \\ & -\frac{1}{2}(2 x-2)((3 x+5)-(2 x+1)) \\ & =6 x^{2}-6 x+10 x-10 \\ & -x^{2}-4 x+x+4 \\ & =5 x^{2}+x-6 \end{aligned}$	Show	4	M1 for correct expression for a single rectangle area $(2 x-2)(2 x+1)$ or $(2 x-2)(3 x+5)$ M1 for correct expression for triangle area $\frac{1}{2}(2 x-2)((3 x+5)-(2 x+1))$ M1 for all 4 terms correct with or without signs or 3 out of no more than four terms correct with signs in expansion of any two linear expressions. C1 for $5 x^{2}+x-6$ and all steps clearly shown in a logical progression QWC: All steps need to be clearly laid out showing a logical progression

5MB2H_01				
Question	Working	Answer	Mark	Notes
15	$\begin{aligned} & \frac{2 x}{x-1}-\frac{7 x-3}{x^{2}-1} \\ & =\frac{2 x(x+1)}{x^{2}-1}-\frac{7 x-3}{x^{2}-1} \\ & =\frac{2 x^{2}+2 x-7 x+3}{x^{2}-1} \\ & =\frac{2 x^{2}-5 x+3}{x^{2}-1} \\ & =\frac{(2 x-3)(x-1)}{(x+1)(x-1)} \\ & =\frac{2 x-3}{x+1} \end{aligned}$	$\frac{2 x-3}{x+1}$	4	B1 for $x^{2}-1=(x+1)(x-1)$ M1 for correct process to obtain any common denominator M1 for correct expansion and simplification of numerator A1 cao

5MB2H_01				
Question	Working	Answer	Mark	Notes
15	Alternative method $\begin{aligned} & \frac{2 x}{x-1}-\frac{7 x-3}{x^{2}-1} \\ & =\frac{2 x\left(x^{2}-1\right)}{(x-1)\left(x^{2}-1\right)}-\frac{(7 x-3)(x-1)}{(x-1)\left(x^{2}-1\right)} \\ & =\frac{2 x\left(x^{2}-1\right)-(7 x+3)(x-1)}{(x-1)\left(x^{2}-1\right)} \\ & =\frac{2 x^{3}-2 x-7 x^{2}+7+3 x-3}{(x-1)\left(x^{2}-1\right)} \\ & =\frac{2 x^{3}-7 x^{2}+8 x-3}{(x-1)\left(x^{2}-1\right)} \\ & =\frac{(2 x-3)(x-1)^{2}}{(x+1)(x-1)^{2}} \\ & =\frac{2 x-3}{x+1} \end{aligned}$	$\frac{2 x-3}{x+1}$	4	Alternative Method M1 for correct process to obtain any common denominator B1 for $2 x^{3}-2 x-7 x^{2}+7+3 x-3$ M1 (dep on first M1) for correct expansion and simplification of numerator A1 cao

5MB2H_01				
Question	Working	Answer	Mark	Notes
16*	$A O T=90-x$ (Angle between tangent and radius is 90°) $A O C=90+x$ (Tangents from an external point are equal) $A C B=2(180-(90+x)) \div 2=90-x$ Or Obtuse angle $B O A=180-2 x$ (Angle between tangent and radius is 90°) Reflex angle $B O A=180+2 x$ (Tangents from an external point are equal) $A C B=(360-(180+2 x)) \div 2-90-x$		5	B1 for $A O T=90-x$ or $O A T=90^{\circ}$ or $O B T=90^{\circ}$ (may be shown on diagram) B1 for $A O C=90+x$ B 1 for completing the proof C2 for 2 reasons: Angle between tangent and radius is 90° and Tangents from an external point are equal. QWC: proof should be clearly laid out with technical language correct [C1 for 1 of: Angle between tangent and radius is 90° or Tangents from an external point are equal, QWC: proof should be clearly laid out with technical language correct] OR B1 for obtuse angle $B O A=180-2 x$ or $O A T=90^{\circ}$ or $O B T=90^{\circ}$ (may be shown on diagram) B1 for reflex angle $B O A=180+2 x$ B1 for completing the proof C2 for 2 reasons: Angle between tangent and radius is 90° and Tangents from an external point are equal. QWC: proof should be clearly laid out with technical language correct [C1 for 1 of: Angle between tangent and radius is 90° or Tangents from an external point are equal, QWC: proof should be clearly laid out with technical language correct]

5MB2H_01				
Question	Working	Answer	Mark	Notes
16*	Alternative method $A O B=360-2 x-90-90=180-2 x$ (Angle between tangent and radius is 90°) $A C B=(180-2 x) / 2$ (Angle at the circumference is half angle at the centre)			Alternative method B1 for $A O B=360-2 x-90-90$ $B 1$ for $A C B=(180-2 x) / 2$ B1 for completing the proof C2 for 2 reasons: Angle between tangent and radius is 90° and Angle at the circumference is half angle at the centre QWC: proof should be clearly laid out with technical language correct [C1 for 1 of: Angle between tangent and radius is 90° or Angle at the circumference is half angle at the centre QWC: proof should be clearly laid out with technical language correct] B3 maybe awarded for a fully correct alternative method.

Further copies of this publication are available from

 Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FNTelephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UG025868 November 2010
For more information on Edexcel qualifications, please visit www.edexcel.com/quals
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

