

Mark Scheme (Results)

March 2012

GCSE Mathematics (2MB01) Paper 5MB1H_01 (Calculator)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our qualifications website at <u>www.edexcel.com</u>. For information about our BTEC qualifications, please call 0844 576 0026, or visit our website at <u>www.btec.co.uk</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to the subject team at Pearson about Edexcel qualifications. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

March 2012 Publications Code UG031134 All the material in this publication is copyright © Pearson Education Ltd 2012

NOTES ON MARKING PRINCIPLES

- 1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- 2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- 3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- 4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- 5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- 6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) *ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear* Comprehension and meaning is clear by using correct notation and labeling conventions.

- ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
- iii) *organise information clearly and coherently, using specialist vocabulary when appropriate.* The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

7 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

If there is no answer on the answer line then check the working for an obvious answer.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

11 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5 - 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme				
M1 – method mark A1 – accuracy mark B1 – Working mark C1 – communication mark QWC – quality of written communication oe – or equivalent cao – correct answer only ft – follow through sc – special case dep – dependent (on a previous mark or conclusion)				
isw – ignore subsequent working				

5MB	5MB1H_01							
Qu	estion	Working	Answer	Mark	Notes			
1		$(6 \times 0) + (9 \times 1) + (7 \times 2) + (3 \times 3) + (2 \times 4) + (1 \times 5)$	45	2	M1 for attempt to multiply the number of cans by the frequency and add the results (condone one arithmetic error) A1 cao			
2*		120÷15 120+8 3×42	No + correct statement	4	M1 for $120 \div 15$ (=8) or 1×8 (teachers) to 15×8 (students) oe M1 for 42×3 (=126) M1 for $120 + '120 \div 15'$ (=128) or difference of 2 oe C1 (dep on all three Ms) for 126 and 128 or 'difference of 2' oe AND for a correct statement that uses correct values OR M1 for $120 \div 15$ (=8) or 1×8 (teachers) to 15×8 (students) oe M1 for $120 \div 15$ (=8) or 1×8 (teachers) to 15×8 (students) oe M1 for $(120 + '8') \div 3$ (=42.66) C1 (dep on all three Ms) for answer in range 42.6–42.7 AND for a correct statement that uses correct values OR M1 for $120 \div 15$ (=8) or 1×8 (teachers) to 15×8 (students) oe M1 for $120 \div 15$ (=8) or 1×8 (teachers) to 15×8 (students) oe M1 for $120 \div 15$ (=8) or 1×8 (teachers) to 15×8 (students) oe M1 for $(120 + '8') \div 42$ (=3.047) or successive subtraction of 42 from '128' C1 (dep on all three Ms) for answer in range 3.04 – 3.05 or remainder 2 oe AND for correct statement that uses correct values			

5MB	5MB1H_01						
Que	estion	Working	Answer	Mark	Notes		
3	(a)	$\begin{array}{c} 0.10 + 0.25 + 0.30 \\ \text{OR} \\ 1 - (0.15 + 0.20) \end{array}$	0.65	2	M1 for 0.10 + 0.25 + 0.30 or 1-(0.15 + 0.20) A1 for 0.65 oe (SC B1 for 0.850e)		
	(b)	200 × 0.30	60	2	M1 for 200 × 0.30 A1 cao		
4*		2329×0.9 =2096.1 2147×0.95 =2039.65 OR 4658×0.9 =4192.2 294×0.95 =4079.3	Royal European	5	M1 for use of 2329 or 2147 (or sight of 4658 or 4294), ie selection of correct column M1 for attempting to calculate the discount for both their figures, eg 2329×0.1 (=232.90) oe AND 2147×0.05 (=107.35) oe or 4658×0.1 (=465.8) oe AND 4294×0.05 (=214.7) oe) OR for attempting to find the discounted price for one, eg 2329×0.9 (=2096.1) oe or 2147×0.95 (=2039.65) oe or 4658×0.9 (=4192.2) oe or 4294×0.95 (=4079.3) oe M1 for attempting to find the discounted price for both, eg 2329×0.9 (=2096.1) oe AND 2147×0.95 (=2039.65) oe or 4658×0.9 (=4192.2) oe AND 2147×0.95 (=2039.65) oe or 4658×0.9 (=4192.2) oe AND 2147×0.95 (=4079.3) oe A1 for 2096(.1) and 2039(.65) OR 4192(.2) and 4079(.3) figures rounded or truncated C1 (dep on at least M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company		

5MB	5MB1H_01							
Que	estion	Working	Answer	Mark	Notes			
5	(a)		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	B2 for fully correct diagram accept a stem of 70, 80, 90, 100 (the order of the numbers in the stem may be reversed) (B1 for ordered leaves or unordered leaves (with one error or omission)) B1 for a correct key (units may be omitted)			
	(b)		92.5	1	B1 for 92.5 or ft from ordered diagram			
6	(a)	$-14 \div 40$	-0.35	2	M1 for method shown to work out the gradient, eg right-angled triangle drawn or $14 \div 40$ or 0.35 or $\frac{14}{40}$ oe A1 for -0.35 or $-\frac{14}{40}$ oe			
	b(i)		P + reason	2	B1 for P with reason eg takes only 40 seconds or crosses time axis first, takes 10 second less oe			
	(ii)		2		B1 cao			
7		$900 \div 360 \\ 2.5 \times 100 \\ 900 - 250 - 225 - 125 - 162.50$	£250, £137.50	3	M1 for $(900 \div 360) \times 100$ or $(100 \div 360) \times 9000e$ or (55 ÷ 360) × 9000e or implied by one correct value A1 for (£)250 or (£)137.5(0) seen A1 for (£)250 and (£)137.5(0) in correct positions			

5MB	5MB1H_01						
Question		Working	Answer	Mark	Notes		
8	(a)		83	1	B1 for answer in range 82 – 83		
	(b)		9	2	M1 for lines drawn to graph at 22 and 66 (tolerance one 2mm square) A1 for answer in range 8 – 10		
	(c)	88 – 78	10	2	M1 for 88 – '78' or 5 × 2 or 5 seen A1 for 10 or 11		
9	(a)		0.6, 0.4, 0.3, 0.7, 0.3, 0.7	2	B2 for 6 correct probabilities in the correct positions (B1 for 2, 3, 4 or 5 correct)		
	(b)	$0.6 \times 0.7 + 0.4 \times 0.3$	0.54	3	M1 for '0.6' ×' 0.7' or '0.4' × '0.3' (may be awarded in tree diagram if selected) M1 for '0.6' × '0.7' + '0.4' × '0.3' A1 cao		
					M1 for '0.6' × '0.3' + '0.4' × '0.7'(may be awarded in tree diagram if selected) M1 for 1 –('0.6' × '0.3' + '0.4' × '0.7') A1 cao		

5MB	5MB1H_01							
Qu	estion	Working	Answer	Mark	Notes			
10	(a)	$\begin{array}{c} 125 \times 50.2 \\ 50 \times 48.7 \\ 6275 - 2435 \end{array} 3840 \div 75 \end{array}$	51.2	3	M1 for 125 × 50.2(=6275) or 50×48.7(=2435) M1 for (125 × 50.2 - 50 × 48.7) ÷ 75 A1 cao			
	(b)		completed box plot	3	B3 for box plot with all three aspects (overlay) aspect 1: ends of whiskers at 18 and 96 aspect 2: ends of box at 32 and 72 aspect 3: median marked at 56 (B2 for box plot with two aspects, B1 for box plot with one aspect or correct quartiles and median identified)			
11	(a)		eg How many times do you go out to eat each month? 0, 1, 2, 3 or more	2	B1 for a suitable question including a time period (may appear with response boxes) B1 for at least 3 non-overlapping boxes which are exhaustive for their question			
	(b)	$\frac{10}{127} \times 50$	4	2	M1 for $\frac{10}{127} \times 50$ (=3.937) oe A1 for 3 or 4			
	(c)		2 valid reasons	2	B2 for 2 reasons, eg not able to get a zero response oe, ages/genders not representive oe, only does it on one day/evening oe (B1 for 1 reason)			

5MB	5MB1H_01						
Question		Working	Answer	Mark	Notes		
12	(a)		Histogram	3	B3 for fully correct histogram (overlay) (B2 for 4 correct blocks B1 for 3 correct blocks) SC B1 for correct key, eg 1cm ² =5(men) or correct freq÷ class interval for at least three frequencies		
	(b)	2x + 1.4x + x + 0.4x + 0.2x	5 <i>x</i>	2	M1 for finding total area of histogram, eg 20(cm ²), or fd for 10 to 20 (0.1x oe) or area of one block in terms of x A1 for 5x oe		
13	(a)	1 - 0.1 $0.9 \div 3$	0.3	2	M1 for $(1 - 0.1) \div 3$ or $0.1+0.3+0.6(=1)$ or $0.6\div 2$ A1 for 0.3 oe		
	(b)	0.1 × 0.1 ×0.1	0.001	2	M1 for $0.1 \times 0.1 \times 0.1$ oe A1 for 0.001 oe		

5MB	5MB1H_01						
Qu	estion	Working	Answer	Mark	Notes		
	(c)	$1 - (0.7 \times 0.7 \times 0.7)$	0.657	3	M1 for $0.7 \times 0.7 \times 0.7$ or ft $(1 - a') \times (1 - a') \times (1 - a')$		
					M1 for $1 - 0.7 \times 0.7 \times 0.7$ or ft $1 - (1 - a') \times (1 - a') \times (1 - a')$ oe		
		OR			A1 for 0.657 oe		
		$3 \times 0.3 \times 0.3 \times 0.7$			(SC B1 for 0.784 oe)		
		$+ 3 \times 0.3 \times 0.7 \times 0.7$			OR		
		$+0.3 \times 0.3 \times 0.3$			M1 for $0.3 \times 0.3 \times 0.7 (=0.063)$ or $0.3 \times 0.7 \times 0.7 (=0.147)$ or		
					$0.3 \times 0.3 \times 0.3 (=0.027)$ oe		
		OR			M1 for $3 \times 0.3 \times 0.3 \times 0.7 + 3 \times 0.3 \times 0.7 \times 0.7 + 0.3 \times 0.3 \times 0.3$		
		$3 \times 0.3 \times 0.3 \times (0.1 + 0.6)$			oe		
		$+ 3 \times 0.3 \times (0.1 + 0.6) \times (0.1$			A1 for 0.657 oe		
		$+0.6) + 0.3 \times 0.3 \times 0.3$			(SC B1 for 0.784 oe)		
					OR		
		OR			M1 for $0.6 \times 0.6 \times 0.6 (=0.216)$ or $0.1 \times 0.6 \times 0.6 (=0.036)$ or		
		0.3 imes 0.3 imes 0.3 + 3 imes 0.3 imes			$0.1 \times 0.1 \times 0.6$ (=0.006) or $0.1 \times 0.1 \times 0.1$ (=0.001) oe		
		0.3 imes 0.6 + 3 imes 0.3 imes 0.3 imes			M1 for $1 - (0.6 \times 0.6 \times 0.6 + 3 \times 0.1 \times 0.6 \times 0.6 + 3 \times 0.1 \times 0.1)$		
		$0.1 + 3 \times 0.3 \times 0.6 \times 0.6 + 3$			$\times 0.6 + 0.1 \times 0.1 \times 0.1$) oe		
		\times 0.3 \times 0.1 \times 0.1 + 6 \times 0.3 \times			A1 for 0.657 oe		
		0.6×0.1			(SC B1 for 0.784 oe)		
					OR		
					M1 for $0.3 \times 0.3 \times 0.3$ or $0.3 \times 0.3 \times 0.6$ or $0.3 \times 0.3 \times 0.1$ or		
					$0.3 \times 0.6 \times 0.6$ or $0.3 \times 0.1 \times 0.1$ or $0.3 \times 0.6 \times 0.1$ oe		
					M1 for $0.3 \times 0.3 \times 0.3 + 3 \times 0.3 \times 0.3 \times 0.6 + 3 \times 0.3 \times 0$		
					$0.1 + 3 \times 0.3 \times 0.6 \times 0.6 + 3 \times 0.3 \times 0.1 \times 0.1 + 6 \times 0.3 \times 0.6 \times$		
					0.1 oe		
					A1 for 0.657 oe		
					(SC B1 for 0.784 oe)		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UG031134 March 2012

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

