GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(i) (a)	31758742437056619528 (may be shown vertically or as separate swaps) 9 comparisons and 8 swaps The smallest (final) mark, 28	M1 A1 B1 B1	[4]	28 moved to the end of the list, no other values moved Correct list at end of first pass (cao) 9 and 8 (written, not tallies) (cao) - if not specified, assume the larger value is comparisons (their) 28 or smallest/least or final/last/end If sorted into increasing order: 2831754243705661 8795 M0 A0, then 9 and $6=$ B1 and (their) 95 or largest/greatest/biggest or final//last/end = B1
(b)	75874243705661953128	B1	[1]	Correct list at end of second pass If sorted into increasing order and already penalised in (i)(a) then condone here: 28314243705661758795
(c)	7 more passes	B1	[1]	7 (cao)
(ii)	$\begin{array}{llllllllll} \hline 31 & 28 & 75 & 87 & 42 & 43 & 70 & 56 & 61 & 95 \\ 75 & 31 & 28 & 87 & 42 & 43 & 70 & 56 & 61 & 95 \end{array}$ 1 comparison and 0 swaps in first pass 2 comparisons and 2 swaps in second pass	M1 A1 B1 B1	[4]	312875 or 312875 ... Correct list, in full, at end of second pass Lists must be easily found, not picked out from working, if the candidate has labelled passes use them as labelled 1 and 0 (written)(cao) may appear next to list 2 and 2 (written)(cao) may appear next to list If sorted into increasing order: 283175 ... $\mathrm{M} 0, \mathrm{~A} 0$, then 1 and $1=\mathrm{B} 1 ; 1$ and $0=\mathrm{B} 1$
(iii)	Bubble sort does not terminate early, since it takes 9 passes to get 95 to the front of the list, so it uses $9+8+\ldots+1$ or 45 comparisons Shuttle sort takes fewer than $1+2+\ldots+9$ comparisons, since, for example, in the fourth pass 42 will be compared with 28,31 and 75 but not with 87.	B1 B1	[2]	Identifying that bubble sort does not terminate early (Just stating $9+8+\ldots+1$ or $45=\mathrm{B} 0$) Allow 'the largest number is at the end of the list' or '95 at end' A good explanation of why shuttle sort requires fewer comparisons in this particular case Do not accept 'because the list is not in reverse order'
(iv)	$\begin{aligned} & 20 \times\left(\frac{50}{10}\right)^{2} \\ & =500 \text { seconds } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Correct method 500 seconds or 8 mins 20 sec (without wrong working)

2(i)	Cannot have an odd number of odd nodes Odd vertices come in pairs	B1	[1]	Sum of orders must be even Sum of orders is 9 so 4.5 arcs (which is impossible)
(ii)	eg Many other correct possibilities	M1 A1	[2]	A diagram showing a graph with four vertices that is not connected and not simple Vertices have orders 1, 2, 3, 4
(iii)	The vertex of order 4 needs to connect to four other vertices, but there are only three other vertices available, so one vertex must be joined twice or the vertex of order 4 is connected to itself. Hence the graph cannot be simple	M1 A1	[2]	Specifically identifying that the problem is with the vertex of order 4 Explaining why the graph cannot be simple (either reason) and stating that simple cannot be achieved Ignore any claims about whether or not the graph is connected
(iv) (a)	Each vertex of order 4 connects to each of the others, since graph is simple. Hence the other two vertices must have order (at least) 3. But Eulerian, so all must have order 4.	B1	[1]	Any reasonable explanation, but not just a diagram of a specific case 'the other two must be odd but they can't because Eulerian' is not enough Note: the graph has five vertices
(b)	Graph is Eulerian - so each vertex order is even; simple - so no vertex has order more than 4; and connected - so no vertex has order 0 . Hence each vertex has order either 2 or 4 . But cannot have 3 or 4 vertices of order 4 . So must have $0,1,2$ or 5 vertices of order 4.	B1 M1 A1	[3]	Explaining why there are only four such graphs Or list all the possibilities (eg 222224222244222 44444) Any two correct (note: must be simply connected and Eulerian) All four correct and no extras (apart from topologically equivalent variations)

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { 3(i) } & \begin{array}{l}y \geq x \\ x \geq 0 \\ y \leq 7-\frac{2}{3} x\end{array} & \text { M1 } & \begin{array}{l}\text { M1 } \\ \text { A1 }\end{array} & \text { [3] }\end{array} \begin{array}{l}\text { Boundaries } y=x \text { and } x=0 \text { in any form (may be shown as } \\ \text { an equality or an inequality with inequality sign wrong) } \\ \text { Boundary } 2 x+3 y=21 \text { in any form } \\ \text { All inequalities correct (and any extras do not affect the } \\ \text { feasible region) }\end{array}\right]$

4(i)	Route: $A-B-D-F-G$	M1 A1 B1 B1 B1	[5]	1.7 shown as a temporary label at G All temporary labels correct with no extras (may not have written temporary label when it becomes permanent) All permanent labels correct (cao) Order of labelling correct (cao) This route written down (not reversed) (cao)
(ii)	Route Inspection problem	B1	[1]	Accept Chinese postman Allow 'postman', 'postman route', but not just 'inspection'
(iii)	$\begin{aligned} & \text { CD }(C B D)=0.3, D G(D F G)=0.65, \\ & C G(C B D F G)=0.95 \\ & \\ & C D(C B D) \text { and } F G=0.75 \\ & \text { or } C D(C B D) \text { and } E G(E F G)=1.05 \\ & \\ & \text { Length }=3.7+0.5+0.3+0.75 \\ & =5.25 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]	Any one of these seen (explicitly or as part of a calculation) All three of these seen (explicitly or as parts of calculations) Or either of these with $A B$ to give 1.25 or 1.55 respectively Adding their 0.75 to 3.7 or their 0.75 to $3.7+0.5+0.3$ (cao) units not needed 5.25 implies M1, M1 A1, irrespective of working
(iv)	$\begin{aligned} & B-D-F-G-C-B \\ & 1.9 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	$\begin{aligned} & \text { cao } \\ & 1.9 \text { (cao) irrespective of method } \end{aligned}$
(v)	[TREE] Vertices added in order BDCF or BDFC Arcs added in order $B D, B C, D F$ or $B D, D F, B C$ Two shortest arcs from G total $0.45+0.65=1.1$ Lower bound $=0.5+1.1=1.6 \mathrm{~km}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	Correct tree drawn A valid order of adding vertices or a valid order of adding arcs 0.45 and 0.65 , or total 1.1 (may be implied from 1.6) 1.6 (cao) units not needed 1.6 implies M1, A1

	Make 5 litres of fruit salad only	B1	[13]	Interpretation of their final (non-negative) \underline{x}, y and z, in context (need 'only' or equivalent; '5 fruit salads' is not enough) $x=5, y=0, z=0 \text { gives B0 }$
(iii)	$60 \div 12=5,50 \div 6=8 \frac{1}{3}, 20 \div 3=6 \frac{2}{3}$ Pivot on the 12 in the x column New row $2=$ row $2 \div 12$ New row 1 = row $1+100 \times$ new row 2 Showing that there are no negative entries in objective row Saying that optimum has been achieved ('no negatives in top row')	B1 M1 A1 M1 A1	[5]	Correct pivot choice from their x column Correct method for their pivot row (seen or implied from correct row in tableau) Correct method for their objective row seen as a formula Showing that there are no negative entries in objective row Or achieving a final tableau, in one iteration, with exactly four basis columns and non-negative entries in final column, in which the value of the objective has not decreased

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

