# Mathematics (MEI) 

## Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

## Mark Schemes for the Units

## June 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

## CONTENTS

Advanced GCE Mathematics (MEI) (7895)
Advanced GCE Further Mathematics (MEI) (7896)
Advanced GCE Further Mathematics (Additional) (MEI) (7897)
Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

## MARK SCHEME FOR THE UNITS

## Unit

Content
Page

4751 Introduction to Advanced Mathematics (C1)
4752 Concepts for Advanced Mathematics (C2)
4753 Methods for Advanced Mathematics (C3)
4754 Applications of Advanced Mathematics (C4)
$4755 \quad$ Further Concepts for Advanced Mathematics (FP1)
$4756 \quad$ Further Methods for Advanced Mathematics (FP2)

4757 Further Applications of Advanced Mathematics (FP3)

4758 Differential Equations
4761 Mechanics 1
4762 Mechanics 2
4763 Mechanics 3
4764 Mechanics 4
4766 Statistics 1
4767 Statistics 2
4768 Statistics 3
4769 Statistics 4
4771 Decision Mathematics 1
4772 Decision Mathematics 2
4773 Decision Mathematics Computation
4776 Numerical Methods
4777 Numerical Computation

* Grade Thresholds

Mark Scheme 4751 June 2007

## Section A

| 1 | $x>-0.6$ o.e. eg $-3 / 5<x$ isw | 3 | M2 for $-3<5 x$ or $x>\frac{3}{-5}$ or M1 for $-5 x<3$ or $k<5 x$ or $-3<k x$ [condone $\leq$ for Ms]; if 0 , allow SC1 for -0.6 found | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $t=[ \pm] \sqrt{\frac{2 s}{a}} \text { o.e. }$ | 3 | B2 for $t$ omitted or $t=\sqrt{\frac{s}{\frac{1}{2} a}}$ o.e. <br> M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their $t^{2}$ | 3 |
| 3 | 'If $2 n$ is an even integer, then $n$ is an odd integer' <br> showing wrong eg 'if $n$ is an even integer, $2 n$ is an even integer' | $1$ $1$ | or: $2 n$ an even integer $\Rightarrow n$ an odd integer <br> or counterexample eg $n=2$ and $2 n=4$ seen [in either order] | 2 |
| 4 | $\begin{aligned} & c=6 \\ & k=-7 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$ | M 1 for $\mathrm{f}(2)=0$ used or for long division as far as $x^{3}-2 x^{2}$ in working | 3 |
| 5 | (i) $4 x^{4} y$ <br> (ii) 32 | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | M1 for two elements correct; condone $y$ M1 for $\left(\frac{2}{1}\right)^{5}$ or $2^{5}$ soi or $\left(\frac{1}{32}\right)^{-1}$ or $\frac{1}{\frac{1}{32}}$ | 4 |
| 6 | $-720\left[x^{3}\right]$ | 4 | B3 for 720; M1 for each of $3^{2}$ and $\pm 2^{3}$ or $(-2 x)^{3}$ or $(2 x)^{3}$, and M1 for 10 or $(5 \times 4 \times 3) /(3 \times 2 \times 1)$ or for 15101051 seen but not for ${ }^{5} \mathrm{C}_{3}$ | 4 |
| 7 | $\frac{-5}{10} \text { o.e. isw }$ | 3 | M1 for $4 x+5=2 x \times-3$ and M1 for $10 x=-5$ o.e. or M1 for $2+\frac{5}{2 x}=-3$ and M1 for $\frac{5}{2 x}=-5$ o.e. | 3 |
| 8 | (i) $2 \sqrt{ } 2$ or $\sqrt{ } 8$ <br> (ii) $30-12 \sqrt{ } 5$ | $\begin{array}{\|l\|} \hline 2 \\ 3 \end{array}$ | M1 for $7 \sqrt{ } 2$ or $5 \sqrt{ } 2$ seen <br> M1 for attempt to multiply num. and denom. by $2-\sqrt{ } 5$ and M1 (dep) for denom -1 or $4-5$ soi or for numerator $12 \sqrt{5}-30$ | 5 |
| 9 | (i) $\pm 5$ <br> (ii) $y=(x-2)^{2}-4$ or $y=x^{2}-4 x$ o.e. isw | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | B1 for one soln <br> M1 if $y$ omitted or for $y=(x+2)^{2}-4$ or $y=x^{2}+4 x$ o.e. | 4 |
| 10 | (i) $1 / 2 \times(x+1)(2 x-3)=9$ o.e. $2 x^{2}-x-3=18 \text { or } x^{2}-1 / 2 x-3 / 2=9$ <br> (ii) $(2 x-7)(x+3)$ <br> -3 and $7 / 2$ o.e. or ft their factors base 4, height 4.5 o.e. cao | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$ | for clear algebraic use of $1 / 2 b h$; condone $(x+1)(2 x-3)=18$ <br> allow $x$ terms uncollected. <br> NB ans $2 x^{2}-x-21=0$ given <br> NB B0 for formula or comp. sq. <br> if factors seen, allow omission of -3 <br> B0 if also give $b=-9, h=-2$ | 5 |

## Section B



\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 \& ii
iii
iv \& \begin{tabular}{l}
\[
4(x-3)^{2}-9
\] \\
min at \((3,-9)\) or ft from (i) \\
\((2 x-3)(2 x-9)\) \\
\(x=1.5\) or 4.5 o.e. \\
sketch of quadratic the right way up \\
crosses \(x\) axis at 1.5 and 4.5 or ft crosses \(y\) axis at 27
\end{tabular} \& \begin{tabular}{l}
4 \\
B2 \\
M1 \\
A2 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
1 for \(a=4,1\) for \(b=3,2\) for \(c=-9\) or M1 for \(27-4 \times 3^{2}\) or \(\frac{27}{4}-3^{2}\left[=-\frac{9}{4}\right]\) \\
1 for each coord [e.g. may start again and use calculus to obtain \(x=3\) ] \\
attempt at factorising or formula or use of their (i) to sq rt stage \\
A1 for 1 correct; accept fractional equivs eg \(36 / 8\) and \(12 / 8\) \\
allow unsimplified shown on graph or in table etc; condone not extending to negative \(x\)
\end{tabular} \& 2 \\
\hline 13 \& ii

iii \& \begin{tabular}{l}
$$
2 x^{3}+5 x^{2}+4 x-6 x^{2}-15 x-12
$$ <br>
3 is root use of $b^{2}-4 a c$ $5^{2}-4 \times 2 \times 4$ or -7 and [negative] implies no real root
$$
\text { divn of } \mathrm{f}(x)+22 \text { by } x-2 \text { as far as }
$$
$$
2 x^{3}-4 x^{2} \text { used }
$$
$$
2 x^{2}+3 x-5 \text { obtained }
$$
$$
(2 x+5)(x-1)
$$
$$
1 \text { and }-2.5 \text { o.e. }
$$ <br>
or
$$
2 \times 2^{3}-2^{2}-11 \times 2-12
$$ <br>
16-4-22-12 <br>
$x=1$ is a root obtained by factor thm $x=-2.5$ obtained as root <br>
cubic right way up crossing $x$ axis only once $(3,0)$ and $(0,-12)$ shown

 \& 

1 <br>
B1 <br>
M1 <br>
A1 <br>
M1 <br>
A1 <br>
M1 <br>
A1 <br>
$+\mathrm{A} 1$ <br>
M1 <br>
A1 <br>
B1 <br>
B2 <br>
G1 <br>
G1 <br>
G1

 \& 

for correct interim step; allow correct long division of $\mathrm{f}(x)$ by $(x-3)$ to obtain $2 x^{2}+5 x+4$ with no remainder <br>
allow $f(3)=0$ shown or equivalents for M1 and A1 using formula or completing square <br>
or inspection eg $(x-2)\left(2 x^{2} \ldots . .-5\right)$ <br>
attempt at factorising/quad. formula/ compl. sq. <br>
or equivs using $\mathrm{f}(x)+22$ <br>
not just stated <br>
must have turning points must have max and min below $x$ axis at intns with axes or in working (indep of cubic shape); ignore other intns

 \& 

4 <br>
<br>
<br>
5 <br>
<br>
3
\end{tabular} <br>

\hline
\end{tabular}

Mark Scheme 4752 June 2007

| 1 | (i) $-\sqrt{3}$ <br> (ii) $\frac{5}{3} \pi$ | 1 2 | Accept any exact form $\text { accept } \frac{5 \pi}{3}, 1^{2} / 3 \pi \text {. M } 1 \pi \mathrm{rad}=180^{\circ} \text { used }$ correctly | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $\begin{aligned} & y^{\prime}=6 \times \frac{3}{2} x^{\frac{1}{2}} \text { or } 9 x^{\frac{1}{2}} \text { o.e. } \\ & y^{\prime \prime}=\frac{9}{2} x^{-\frac{1}{2}} \text { o.e. } \\ & \sqrt{3} 6=6 \text { used } \\ & \text { interim step to obtain } \frac{3}{4} \end{aligned}$ | 2 <br> 1 <br> M1 <br> A1 | 1 if one error in coeff or power, or extra term <br> f.t. their $y^{\prime}$ only if fractional power <br> f.t. their $y^{\prime \prime}$ www answer given | 5 |
| 3 | (i) $y=2 \mathrm{f}(x)$ <br> (ii) $y=\mathrm{f}(x-3)$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { 1 if ' } y=\text { ' omitted [penalise only once] } \\ & \text { M1 for } \mathrm{y}=\mathrm{kf}(\mathrm{x}), \mathrm{k}>0 \\ & \text { M1 for } y=\mathrm{f}(x+3) \text { or } \mathrm{y}=\mathrm{f}(\mathrm{x}-\mathrm{k}) \end{aligned}$ | 4 |
| 4 | (i) 11 <br> 27 or ft from their 11 <br> (ii) 20 | $\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \end{aligned}$ | M1 for $1 \times 2+2 \times 3+3 \times 4$ soi, or $2,6,12$ identified, or for substituting $\mathrm{n}=3$ in standard formulae | 4 |
| 5 | $\begin{aligned} & \theta=0.72 \text { o.e } \\ & 13.6[\mathrm{~cm}] \end{aligned}$ | $\begin{array}{\|l\|} \hline 2 \\ 3 \end{array}$ | M1 for $9=1 / 2 \times 25 \times \theta$ No marks for using degrees unless attempt to convert B 2 ft for $10+5 \times$ their $\theta$ or for 3.6 found or M1 for $s=5 \theta$ soi | 5 |
| 6 | (i) $\log _{a} 1=0, \log _{a} a=1$ <br> (ii) showing both sides equivalent | $\begin{aligned} & 1+1 \\ & 3 \end{aligned}$ | NB, if not identified, accept only in this order <br> M1 for correct use of $3^{\text {rd }}$ law and M1 for correct use of $1^{\text {st }}$ or $2^{\text {nd }}$ law. Completion www A1. Condone omission of $a$. | 5 |
| 7 | (i) curve with increasing gradient any curve through $(0,1)$ marked <br> (ii) 2.73 | $\begin{array}{\|l\|} \hline \text { G1 } \\ \text { G1 } \\ 3 \\ \hline \end{array}$ | correct shape in both quadrants <br> M1 for $x \log 3=\log 20\left(\right.$ or $\left.\mathrm{x}=\log _{3} 20\right)$ and M1 for $x=\log 20 \div \log 3$ or B 2 for other versions of 2.726833.. or B1 for other answer 2.7 to 2.8 | 5 |
| 8 | $\begin{aligned} & \text { (i) } 2\left(1-\sin ^{2} \theta\right)+7 \sin \theta=5 \\ & \text { (ii) }(2 \sin \theta-1)(\sin \theta-3) \\ & \sin \theta=1 / 2 \\ & 30^{\circ} \text { and } 150^{\circ} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1 \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$ | for $\cos ^{2} \theta+\sin ^{2} \theta=1$ o.e. used <br> $1^{\text {st }}$ and $3^{\text {rd }}$ terms in expansion correct <br> f.t. factors <br> B1,B1 for each solution obtained by any valid method, ignore extra solns outside range, $30^{\circ}, 150^{\circ}$ plus extra soln(s) scores 1 | 5 |

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& i

ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& y^{\prime}=6 x^{2}-18 x+12 \\
& =12 \\
& y=7 \text { when } x=3
\end{aligned}
$$ <br>
$\operatorname{tgt}$ is $y-7=12(x-3)$ verifying $(-1,-41)$ on tgt
$$
y^{\prime}=0 \text { soi }
$$ <br>
quadratic with 3 terms
$$
x=1 \text { or } 2
$$
$$
y=3 \text { or } 2
$$ <br>
cubic curve correct orientation touching x - axis only at $(0.2,0)$ max and min correct curve crossing $y$ axis only at -2

 \& 

M1 <br>
M1 <br>
B1 <br>
M1 <br>
A1 <br>
M1 <br>
M1 <br>
A1 <br>
A1 <br>
G1 <br>
G1 <br>
G1

 \& 

condone one error subst of $x=3$ in their $y^{\prime}$ <br>
f.t. their $y$ and $y^{\prime}$ or B2 for showing line joining $(3,7)$ and $(-1,-41)$ has gradient 12 <br>
Their $y^{\prime}$ <br>
Any valid attempt at solution or A1 for $(1,3)$ and A1 for $(2,2)$ marking to benefit of candidate
f.t.
\end{tabular} \& 5

4
4
3 <br>
\hline 10 \& i

ii

iii

iv \& \begin{tabular}{l}
$$
970 \text { [m] }
$$ <br>
concave curve or line of traps is above curve
$$
(19+14+11+11+12+16) \times 10
$$ <br>
830 to 880 incl.[m]
$$
t=10, v_{\text {model }}=19.5
$$ <br>
difference $=0.5$ compared with $3 \%$ of $19=0.57$
$$
28 t-1 / 2 t^{2}+0.005 t^{3} \text { o.e. }
$$ <br>
value at 60 [- value at 0 ] <br>
960

 \& 

4 <br>
1 <br>
M1 <br>
A1 <br>
B1 <br>
B1f.t. <br>
M1 <br>
M1 <br>
A1

 \& 

M3 for attempt at trap rule $1 / 2 \times 10 \times(28+22+2[19+14+11+12+16])$ <br>
M2 with 1 error, M1 with 2 errors. <br>
Or M3 for 6 correct trapezia, M2 for 4 correct trapezia, M1 for 2 correct trapezia. <br>
Accept suitable sketch <br>
M1 for 3 or more rectangles with values from curve. <br>
or $\frac{0.5}{19} \times 100 \approx 2.6$ <br>
2 terms correct, ignore +c <br>
ft from integrated attempt with 3 terms
\end{tabular} \& 4

3
3
2
3 <br>
\hline 11 \& ai
aii
bi
bi
ii

iii \& \[
$$
\begin{aligned}
& 13 \\
& 120 \\
& \frac{125}{1296} \\
& a=1 / 6, r=5 / 6 \text { s.o.i. } \\
& S_{\infty}=\frac{\frac{1}{6}}{1-\frac{5}{6}} \text { o.e. } \\
& \quad\left(\frac{5}{6}\right)^{n-1}<0.006 \\
& (n-1) \log _{10}\left(\frac{5}{6}\right)<\log _{10} 0.006 \\
& \quad n-1>\frac{\log _{10} 0.006}{\log _{10}\left(\frac{5}{6}\right)} \\
& \quad n \\
& n_{\min }=30
\end{aligned}
$$

\] \& | 1 2 |
| :--- |
| 2 |
| $1+1$ |
| 1 |
| M1 |
| M1 |
| DM1 |
| B1 |
| M1 |
| M1 | \& | M1 for attempt at AP formula ft their $a$, $d$ or for $3+5+\ldots+21$ |
| :--- |
| M1 for $\frac{1}{6} \times\left(\frac{5}{6}\right)^{3}$ |
| If not specified, must be in right order |
| condone omission of base, but not brackets |
| NB change of sign must come at correct place | \& 1

2
2
2
3

4 <br>
\hline
\end{tabular}

Mark Scheme 4753 June 2007

## Section A

|  | $\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$ | $\begin{aligned} & \text { chain rule } \\ & 1 / 2 u^{-1 / 2} \text { or } 1 / 2(1+2 x)^{-1 / 2} \\ & \text { oe, but must resolve } 1 / 2 \times 2=1 \end{aligned}$ |
| :---: | :---: | :---: |
| $\text { (ii) } \begin{aligned} y & =\ln \left(1-e^{-x}\right) \\ \Rightarrow \quad \frac{d y}{d x} & =\frac{1}{1-e^{-x}} \cdot\left(-e^{-x}\right)(-1) \\ & =\frac{e^{-x}}{1-e^{-x}} \\ & =\frac{1}{e^{x}-1} * \end{aligned}$ | M1 <br> B1 <br> A1 <br> E1 <br> [4] | chain rule <br> $\frac{1}{1-e^{-x}}$ or $\frac{1}{u}$ if substituting $u=1-e^{-x}$ $\times\left(-\mathrm{e}^{-x}\right)(-1) \text { or } \mathrm{e}^{-x}$ <br> www (may imply $\times \mathrm{e}^{x}$ top and bottom) |
| $2 \mathrm{gf}(x)=\|1-x\|$ | B1 <br> B1 <br> B1 <br> [3] | intercepts must be labelled line must extend either side of each axis <br> condone no labels, but line must extend to left of $y$ axis |
| 3(i) Differentiating implicitly: $\begin{aligned} & (4 y+1) \frac{d y}{d x}=18 x \\ \Rightarrow \quad & \frac{d y}{d x}=\frac{18 x}{4 y+1} \end{aligned}$ <br> When $x=1, y=2, \frac{d y}{d x}=\frac{18}{9}=2$ | M1 <br> A1 <br> M1 <br> A1cao <br> [4] | $(4 y+1) \frac{d y}{d x}=\ldots$ allow $4 y+1 \frac{d y}{d x}=\ldots$ <br> condone omitted bracket if intention implied by following line. $4 y \frac{d y}{d x}+1$ M1 A0 <br> substituting $x=1, y=2$ into their derivative (provided it contains $x$ 's and $y$ 's). Allow unsupported answers. |
| (ii) $\begin{aligned} & \frac{d y}{d x}=0 \text { when } x=0 \\ & \Rightarrow \quad 2 y^{2}+y=1 \\ & \Rightarrow \quad 2 y^{2}+y-1=0 \\ & \Rightarrow \quad(2 y-1)(y+1)=0 \\ & \Rightarrow y=1 / 2 \text { or } y=-1 \end{aligned}$ $\text { So coords are }(0,1 / 2) \text { and }(0,-1)$ | B1 <br> M1 <br> A1 A1 <br> [4] | $x=0$ from their numerator $=0$ (must have a denominator) <br> Obtaining correct quadratic and attempt to factorise or use quadratic formula $y=\frac{-1 \pm \sqrt{1-4 \times-2}}{4}$ <br> cao allow unsupported answers provided quadratic is shown |



## Section B

| 7(i) Asymptote when $1+2 x^{3}=0$ $\begin{aligned} \Rightarrow & 2 x^{3}=-1 \\ \Rightarrow & x=-\frac{1}{\sqrt[3]{2}} \\ & =-0.794 \end{aligned}$ | M1 <br> A1 <br> A1cao <br> [3] | oe, condone $\pm \frac{1}{\sqrt[3]{2}}$ if positive root is rejected must be to 3 s.f. |
| :---: | :---: | :---: |
| $\text { (ii) } \begin{aligned} & \frac{d y}{d x}=\frac{\left(1+2 x^{3}\right) \cdot 2 x-x^{2} \cdot 6 x^{2}}{\left(1+2 x^{3}\right)^{2}} \\ &=\frac{2 x+4 x^{4}-6 x^{4}}{\left(1+2 x^{3}\right)^{2}} \\ &=\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}} * \\ & \Rightarrow \quad \begin{aligned} \mathrm{d} y / \mathrm{d} x & =0 \text { when } 2 x\left(1-x^{3}\right)=0 \\ \quad \text { or } x & =0, y=0 \\ y & =1 / 3 \end{aligned} \end{aligned}$ | M1 <br> A1 <br> E1 <br> M1 <br> B1 B1 <br> B1 B1 <br> [8] | Quotient or product rule: ( $u \mathrm{~d} v-v \mathrm{~d} u \mathrm{M} 0$ ) $2 x\left(1+2 x^{3}\right)^{-1}+x^{2}(-1)\left(1+2 x^{3}\right)^{-2} .6 x^{2}$ allow one slip on derivatives <br> correct expression - condone missing bracket if if intention implied by following line <br> derivative $=0$ <br> $x=0$ or $1-$ allow unsupported answers <br> $y=0$ and $1 / 3$ <br> SC -1 for setting denom $=0$ or extra solutions <br> (e.g. $x=-1$ ) |
| (iii) $A=\int_{0}^{1} \frac{x^{2}}{1+2 x^{3}} d x$ | M1 | Correct integral and limits - allow $\int_{1}^{0}$ |
| $\begin{aligned} \text { either } & =\left[\frac{1}{6} \ln \left(1+2 x^{3}\right)\right]_{0}^{1} \\ & =\frac{1}{6} \ln 3^{*} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$ | $\begin{aligned} & k \ln \left(1+2 x^{3}\right) \\ & k=1 / 6 \\ & \text { substituting limits dep previous M1 } \\ & \text { www } \end{aligned}$ |
| $\begin{aligned} \text { or } & \text { let } u=1+2 x^{3} \Rightarrow \mathrm{~d} u=6 x^{2} \mathrm{~d} x \\ \Rightarrow \quad A & =\int_{1}^{3} \frac{1}{6} \cdot \frac{1}{u} d u \\ & =\left[\frac{1}{6} \ln u\right]_{1}^{3} \\ & =\frac{1}{6} \ln 3^{*} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & {[5]} \end{aligned}$ | $\begin{aligned} & \frac{1}{6 u} \\ & \frac{1}{6} \ln u \end{aligned}$ <br> substituting correct limits (but must have used substitution) www |


| 8 (i) $x \cos 2 x=0$ when $x=0$ or $\cos 2 x=0$ $\begin{array}{ll} \Rightarrow & 2 x=\pi / 2 \\ \Rightarrow & x=1 / 4 \pi \\ \Rightarrow & \mathrm{P} \text { is }(\pi / 4,0) \end{array}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$ | $\begin{aligned} & \cos 2 x=0 \\ & \text { or } x=1 / 2 \cos ^{-1} 0 \\ & x=0.785 . . \text { or } 45 \text { is M1 M1 A0 } \end{aligned}$ |
| :---: | :---: | :---: |
| (ii) $\begin{aligned} \mathrm{f}(-x) & =-x \cos (-2 x) \\ & =-x \cos 2 x \\ & =-\mathrm{f}(x) \end{aligned}$ <br> Half turn symmetry about O . | M1 <br> E1 <br> B1 <br> [3] | $\begin{aligned} & -x \cos (-2 x) \\ & =-x \cos 2 x \\ & \text { Must have two of: rotational, order } 2, \text { about } \mathrm{O} \text {, } \\ & \text { (half turn = rotational order 2) } \end{aligned}$ |
| (iii) $\mathrm{f}^{\prime}(x)=\cos 2 x-2 x \sin 2 x$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$ | product rule |
| $\begin{array}{ll} \text { (iv) } & \mathrm{f}^{\prime}(x)=0 \Rightarrow \cos 2 x=2 x \sin 2 x \\ \Rightarrow & 2 x \frac{\sin 2 x}{\cos 2 x}=1 \\ \Rightarrow & x \tan 2 x=1 / 2 * \end{array}$ | M1 <br> E1 [2] | $\frac{\sin }{\cos }=\tan$ <br> www |
| $\begin{aligned} \text { (v) } \mathrm{f}^{\prime}(0) & =\cos 0-2 \cdot 0 \cdot \sin 0=1 \\ \mathrm{f}^{\prime \prime}(x) & =-2 \sin 2 x-2 \sin 2 x-4 x \cos 2 x \\ & =-4 \sin 2 x-4 x \cos 2 x \\ \Rightarrow \quad \mathrm{f}^{\prime \prime}(0) & =-4 \sin 0-4 \cdot 0 \cdot \cos 0=0 \end{aligned}$ | B1ft <br> M1 <br> A1 <br> E1 <br> [4] | allow ft on (their) product rule expression product rule on (2) $x \sin 2 x$ <br> correct expression - mark final expression www |
| $\begin{aligned} & \text { (vi) Let } u=x, \mathrm{~d} v / \mathrm{d} x=\cos 2 x \\ & \Rightarrow v=1 / 2 \sin 2 x \\ & \begin{aligned} \int_{0}^{\pi / 4} x \cos 2 x d x & =\left[\frac{1}{2} x \sin 2 x\right]_{0}^{\pi / 4}-\int_{0}^{\pi / 4} \frac{1}{2} \sin 2 x d x \\ & =\frac{\pi}{8}+\left[\frac{1}{4} \cos 2 x\right]_{0}^{\pi / 4} \\ & =\frac{\pi}{8}-\frac{1}{4} \end{aligned} \end{aligned}$ <br> Area of region enclosed by curve and $x$-axis between $x=0$ and $x=\pi / 4$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[6]} \end{aligned}$ | Integration by parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\cos 2 x$ <br> $\left[\frac{1}{4} \cos 2 x\right]$ - sign consistent with their previous line substituting limits - dep using parts www or graph showing correct area - condone P for $\pi / 4$. |

Mark Scheme 4754 June 2007

## Section A

| $\begin{aligned} & 1 \quad \sin \theta-3 \cos \theta=R \sin (\theta-\alpha) \\ & \quad=R(\sin \theta \cos \alpha-\cos \theta \sin \alpha) \\ & \Rightarrow \quad R \cos \alpha=1, R \sin \alpha=3 \\ & \Rightarrow \quad R^{2}=1^{2}+3^{2}=10 \Rightarrow R=\sqrt{ } 10 \\ & \tan \alpha=3 \Rightarrow \alpha=71.57^{\circ} \\ & \\ & \sqrt{ } 10 \sin \left(\theta-71.57^{\circ}\right)=1 \\ & \Rightarrow \quad \theta-71.57^{\circ}=\sin ^{-1}(1 / \sqrt{ } 10) \\ & \quad \theta-71.57^{\circ}=18.43^{\circ}, 161.57^{\circ} \\ & \Rightarrow \quad \theta=90^{\circ}, \\ & \quad 233.1^{\circ} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[7]} \end{aligned}$ | equating correct pairs <br> oe ft www cao ( $71.6^{\circ}$ or better) <br> oe ft R, $\alpha$ <br> www <br> and no others in range (MR-1 for radians) |
| :---: | :---: | :---: |
| 2 Normal vectors are $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}1 \\ -2 \\ 1\end{array}\right)$ $\Rightarrow\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) \cdot\left(\begin{array}{l}1 \\ -2 \\ 1\end{array}\right)=2-6+4=0$ <br> $\Rightarrow$ planes are perpendicular. | B1 <br> B1 <br> M1 <br> E1 <br> [4] |  |
| $\begin{array}{ll} 3 & \text { (i) } y=\ln x \Rightarrow x=\mathrm{e}^{y} \\ \Rightarrow & V=\int_{0}^{2} \pi x^{2} d y \\ & =\int_{0}^{2} \pi\left(e^{y}\right)^{2} d y=\int_{0}^{2} \pi e^{2 y} d y^{*} \end{array}$ | B1 <br> M1 <br> E1 <br> [3] |  |
| $\text { (ii) } \begin{gathered} \int_{0}^{2} \pi e^{2 y} d y=\pi\left[\frac{1}{2} e^{2 y}\right]_{0}^{2} \\ =1 / 2 \pi\left(\mathrm{e}^{4}-1\right) \end{gathered}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$ | $\begin{aligned} & 1 / 2 \mathrm{e}^{2 y} \\ & \text { substituting limits in } k \pi e^{2 y} \\ & \text { or equivalent, but must be exact and evaluate } \mathrm{e}^{0} \end{aligned}$ $\text { as } 1 .$ |
| $\begin{array}{ll} 4 & x=\frac{1}{t}-1 \Rightarrow \frac{1}{t}=x+1 \\ \Rightarrow & t=\frac{1}{x+1} \\ \Rightarrow & y=\frac{2+\frac{1}{x+1}}{1+\frac{1}{x+1}}=\frac{2 x+2+1}{x+1+1}=\frac{2 x+3}{x+2} \end{array}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$ | Solving for $t$ in terms of $x$ or $y$ <br> Subst their t which must include a fraction, clearing subsidiary fractions/ changing the subject oe www |
| $\text { or } \begin{aligned} {\left[\frac{3+2 x}{2+x}\right.} & =\frac{3+\frac{2-2 t}{t}}{2+\frac{1-t}{t}} \\ & =\frac{3 t+2-2 t}{2 t+1-t} \\ & =\frac{t+2}{t+1}=y \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & {[4]} \end{aligned}$ | substituting for $x$ or $y$ in terms of $t$ <br> clearing subsidiary fractions/changing the subject |

$5 \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right) \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1-\lambda \\ 2+2 \lambda \\ -1+3 \lambda\end{array}\right)$
When $x=-1,1-\lambda=-1, \Rightarrow \lambda=2$
$\Rightarrow y=2+2 \lambda=6$,

$$
z=-1+3 \lambda=5
$$

$\Rightarrow$ point lies on first line

$$
\mathbf{r}=\left(\begin{array}{l}
0 \\
6 \\
3
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
0 \\
-2
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
\mu \\
6 \\
3-2 \mu
\end{array}\right)
$$

When $x=-1, \mu=-1$,
$\Rightarrow y=6$,

$$
z=3-2 \mu=5
$$

$\Rightarrow$ point lies on second line
Angle between $\left(\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ -2\end{array}\right)$ is $\theta$, where
$\cos \theta=\frac{-1 \times 1+2 \times 0+3 \times-2}{\sqrt{14} \cdot \sqrt{5}}$

$$
=-\frac{7}{\sqrt{70}}
$$

$\Rightarrow \quad \theta=146.8^{\circ}$
$\Rightarrow$ acute angle is $33.2^{\circ}$
6(i) $A \approx 0.5\left[\frac{(1.1696+1.0655}{2}+1.1060\right]$

$$
=1.11 \text { (3 s.f.) }
$$

(ii) $\quad\left(1+e^{-x}\right)^{1 / 2}=1+\frac{1}{2} e^{-x}+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2!}\left(e^{-x}\right)^{2}+\ldots$

$$
\approx 1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x *}
$$

(iii) $I=\int_{1}^{2}\left(1+\frac{1}{2} e^{-x}-\frac{1}{8} e^{-2 x}\right) d x$

$$
\begin{aligned}
& =\left[x-\frac{1}{2} e^{-x}+\frac{1}{16} e^{-2 x}\right]_{1}^{2} \\
& =\left(2-\frac{1}{2} e^{-2}+\frac{1}{16} e^{-4}\right)-\left(1-\frac{1}{2} e^{-1}+\frac{1}{16} e^{-2}\right) \\
& =1.9335-0.8245 \\
& =1.11 \text { (3 s.f. })
\end{aligned}
$$

Finding $\lambda$ or $\mu$
checking other two coordinates
checking other two co-ordinates

Finding angle between correct vectors
use of formula
$\pm \frac{7}{\sqrt{70}}$

Final answer must be acute angle
[7]
Alcao

M1

A1 cao
[2]
M1 $\quad$ Binomial expansion with $p=1 / 2$
A1

E1
[3]

|  | integration |
| :--- | :--- |
| M1 | substituting limits into correct expression |
| A1 |  |
| A1 |  |
| $[3]$ |  |

## Section B

| $\begin{aligned} 7 \text { (a) (i) } P_{\max } & =\frac{2}{2-1}=2 \\ P_{\min } & =\frac{2}{2+1}=2 / 3 . \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$ |  |
| :---: | :---: | :---: |
|  | M1 <br> B1 <br> A1 <br> DM1 <br> E1 <br> [5] | chain rule $-1(\ldots)^{-2} \text { soi }$ <br> (or quotient rule M1,numerator <br> A1, denominator A1) <br> attempt to verify <br> or by integration as in (b)(ii) |
| $\begin{aligned} & \text { (b)(i) } \frac{1}{P(2 P-1)}=\frac{A}{P}+\frac{B}{2 P-1} \\ & =\frac{A(2 P-1)+B P}{P(2 P-1)} \\ & \Rightarrow \quad 1=A(2 P-1)+B P \\ & P=0 \Rightarrow 1=-A \Rightarrow A=-1 \\ & P=1 / 2 \Rightarrow 1=A .0+1 / 2 B \Rightarrow B=2 \\ & \text { So } \frac{1}{P(2 P-1)}=-\frac{1}{P}+\frac{2}{2 P-1} \end{aligned}$ | M1 <br> M1 <br> A1 <br> A1 <br> [4] | correct partial fractions <br> substituting values, equating coeffs or cover up rule $A=-1$ $B=2$ |
| $\begin{aligned} & \text { (ii) } \frac{d P}{d t}=\frac{1}{2}\left(2 P-P^{2}\right) \cos t \\ & \Rightarrow \quad \int \frac{1}{2 P^{2}-P} d P=\int \frac{1}{2} \cos t d t \\ & \Rightarrow \quad \int\left(\frac{2}{2 P-1}-\frac{1}{P}\right) d P=\int \frac{1}{2} \cos t d t \\ & \Rightarrow \quad \ln (2 P-1)-\ln P=1 / 2 \sin t+c \\ & \text { When } t=0, P=1 \\ & \Rightarrow \quad \ln 1-\ln 1=1 / 2 \sin 0+c \Rightarrow c=0 \\ & \Rightarrow \ln \left(\frac{2 P-1}{P}\right)=\frac{1}{2} \sin t^{*} \end{aligned}$ | M1 <br> A1 <br> A1 <br> B1 <br> E1 $[5]$ | separating variables <br> $\ln (2 P-1)-\ln P$ ft their A,B from (i) <br> $1 / 2 \sin t$ <br> finding constant $=0$ |
| $\begin{aligned} \text { (iii) } & P_{\max }=\frac{1}{2-e^{1 / 2}}=2.847 \\ & P_{\min }=\frac{1}{2-e^{-1 / 2}}=0.718 \end{aligned}$ | M1A1 <br> M1A1 <br> [4] | www www |


| $8 \text { (i) } \begin{aligned} \frac{d y}{d x} & =\frac{10 \cos \theta+10 \cos 2 \theta}{-10 \sin \theta-10 \sin 2 \theta} \\ & =-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta} * \end{aligned}$ <br> When $\theta=\pi / 3, \frac{d y}{d x}=-\frac{\cos \pi / 3+\cos 2 \pi / 3}{\sin \pi / 3+\sin 2 \pi / 3}$ $=0 \text { as } \cos \pi / 3=1 / 2, \cos 2 \pi / 3=-1 / 2$ $\text { At } \begin{aligned} A x & =10 \cos \pi / 3+5 \cos 2 \pi / 3 \\ = & 2^{1 / 2} \\ y= & 10 \sin \pi / 3+5 \sin 2 \pi / 3=15 \sqrt{ } 3 / 2 \end{aligned}$ | M1 <br> E1 <br> B1 <br> M1 <br> A1 <br> A1 <br> [6] | $d y / d \theta \div d x / d \theta$ <br> or solving $\cos \theta+\cos 2 \theta=0$ <br> substituting $\pi / 3$ into $x$ or $y$ 21/2 <br> $15 \sqrt{ } 3 / 2$ (condone 13 or better) |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { (ii) } x^{2}+y^{2}=(10 \cos \theta+5 \cos 2 \theta)^{2}+(10 \sin \theta+5 \sin 2 \theta)^{2} \\ & =100 \cos ^{2} \theta+100 \cos \theta \cos 2 \theta+25 \cos ^{2} 2 \theta \\ & +100 \sin ^{2} \theta+100 \sin \theta \sin 2 \theta+25 \sin ^{2} 2 \theta \\ & =100+100 \cos (2 \theta-\theta)+25 \\ & =125+100 \cos \theta * \end{aligned}$ | B1 <br> M1 <br> DM1 <br> E1 <br> [4] | expanding $\cos 2 \theta \cos \theta+\sin 2 \theta \sin \theta=\cos (2 \theta-\theta)$ or substituting for $\sin 2 \theta$ and $\cos 2 \theta$ |
| (iii) $\begin{aligned} \operatorname{Max} \sqrt{125+100} & =15 \\ \min \sqrt{125-100} & =5\end{aligned}$ | B1 <br> B1 <br> [2] |  |
| (iv) $\begin{aligned} & 2 \cos ^{2} \theta+2 \cos \theta-1=0 \\ & \quad \cos \theta=\frac{-2 \pm \sqrt{12}}{4}=\frac{-2 \pm 2 \sqrt{3}}{4} \end{aligned}$ <br> At B, $\cos \theta=\frac{-1+\sqrt{3}}{2}$ $\begin{aligned} & \mathrm{OB}^{2}=125+50(-1+\sqrt{ } 3)=75+50 \sqrt{ } 3=161.6 \ldots \\ & \Rightarrow \quad \mathrm{OB}=\sqrt{ } 161.6 \ldots=12.7(\mathrm{~m}) \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> [4] | quadratic formula <br> or $\theta=68.53^{\circ}$ or 1.20 radians, correct root selected or $\mathrm{OB}=10 \sin \theta+5 \sin 2 \theta \mathrm{ft}$ their $\theta / \cos \theta$ oe cao |

## Paper B Comprehension

| 1) | $\begin{aligned} & \mathrm{M}(a \pi, 2 a), \theta=\pi \\ & \mathrm{N}(4 a \pi, 0), \theta=4 \pi \end{aligned}$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| 2) | Compare the equations with equations given in text, $x=a \theta-b \sin \theta, y=b \cos \theta$ | M1 | Seeing $a=7, b=0.25$ |
|  | $\begin{aligned} & \text { Wavelength }=2 \pi a=14 \pi(\approx 44) \\ & \text { Height }=2 b=0.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { A1 } \\ \text { B1 } \\ \hline \end{array}$ |  |
| 3i) | Wavelength $=20 \Rightarrow a=\frac{10}{\pi}(=3.18 \ldots)$ Height $=2 \Rightarrow b=1$ | B1 <br> B1 |  |
| ii) | In this case, the ratio is observed to be 12:8 Trough length : <br> Peak length $=\pi a+2 b: \pi a-2 b$ <br> and this is $(10+2 \times 1):(10-2 \times 1)$ <br> So the curve is consistent with the parametric equations | $\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ | substituting |
| 4i) | $x=a \theta, y=b \cos \theta$ is the sine curve $V$ and $x=a \theta-b \sin \theta, y=b \cos \theta$ is the curtate cycloid $U$. <br> The sine curve is above mid-height for half its wavelength (or equivalent) | B1 |  |
| ii) | $\begin{aligned} & d=a \theta-(a \theta-b \sin \theta) \\ & \theta=\pi / 2, d=\left(\frac{\pi a}{2}\right)-\left(\frac{\pi a}{2}-b\right)=b \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$ | Subtraction <br> Using $\theta=\pi / 2$ |
| iii) | Because $b$ is small compared to $a$, the two curves are close together. | $\begin{aligned} & \hline \text { M1 } \\ & \text { E1 } \\ & \hline \end{aligned}$ | Comparison attempted Conclusion |
| 5) | Measurements on the diagram give <br> Wavelength $\approx 3.5 \mathrm{~cm}$, Height $\approx 0.8 \mathrm{~cm}$ $\frac{\text { Wavelength }}{\text { Height }} \approx \frac{3.5}{0.8}=4.375$ <br> Since $4.375<7$, the wave will have become unstable and broken. | B1 <br> M1 <br> E1 | measurements/reading <br> ratio |

## Mark Scheme 4755 June 2007

| Section A |  |  |  |
| :---: | :---: | :---: | :---: |
| 1(i) | $\mathbf{M}^{-1}=\frac{1}{10}\left(\begin{array}{cc} 3 & 1 \\ -4 & 2 \end{array}\right)$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$ | Attempt to find determinant |
| 1(ii) | 20 square units | $\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$ | $2 \times$ their determinant |
| 2 | $\|z-(3-2 \mathrm{j})\|=2$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$ | $\begin{aligned} & z \pm(3-2 j) \text { seen } \\ & \text { radius }=2 \text { seen } \\ & \text { Correct use of modulus } \end{aligned}$ |
| 3 | $\begin{aligned} & x^{3}-4=(x-1)\left(A x^{2}+B x+C\right)+D \\ & \Rightarrow x^{3}-4=A x^{3}+(B-A) x^{2}+(C-B) x-C+D \\ & \Rightarrow A=1, B=1, C=1, D=-3 \end{aligned}$ | M1 B1 B1 B1 B1 B1 [5] | Attempt at equating coefficients or long division (may be implied) For $A=1$ <br> B1 for each of $B, C$ and $D$ |
| 4(i) |  | B1 B1 <br> [2] | One for each correctly shown. s.c. B1 if not labelled correctly but position correct |
| 4(ii) | $\alpha \beta=(1-2 \mathrm{j})(-2-\mathrm{j})=-4+3 \mathrm{j}$ | M1 A1 [2] | Attempt to multiply |
| 4(iii) | $\frac{\alpha+\beta}{\beta}=\frac{(\alpha+\beta) \beta^{*}}{\beta \beta^{*}}=\frac{\alpha \beta^{*}+\beta \beta^{*}}{\beta \beta^{*}}=\frac{5 \mathrm{j}+5}{5}=\mathrm{j}+1$ | M1 A1 A1 [3] | Appropriate attempt to use conjugate, or other valid method 5 in denominator or correct working consistent with their method All correct |

\begin{tabular}{|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
Scheme A
\[
\begin{aligned}
\& w=3 x \Rightarrow x=\frac{w}{3} \\
\& \Rightarrow\left(\frac{w}{3}\right)^{3}+3\left(\frac{w}{3}\right)^{2}-7\left(\frac{w}{3}\right)+1=0 \\
\& \Rightarrow w^{3}+9 w^{2}-63 w+27=0
\end{aligned}
\] \\
OR
\end{tabular} \& B1
M1
A3

A1

[6] \& | Substitution. For substitution $x=3 w$ give B0 but then follow through for a maximum of 3 marks |
| :--- |
| Substitute into cubic |
| Correct coefficients consistent with $x^{3}$ coefficient, minus 1 each error Correct cubic equation c.a.o. | <br>

\hline \& | Scheme B $\begin{aligned} & \alpha+\beta+\gamma=-3 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-7 \\ & \alpha \beta \gamma=-1 \end{aligned}$ |
| :--- |
| Let new roots be $k, l, m$ then $\begin{aligned} & k+l+m=3(\alpha+\beta+\gamma)=-9=\frac{-B}{A} \\ & k l+k m+l m=9(\alpha \beta+\alpha \gamma+\beta \gamma)=-63=\frac{C}{A} \\ & k l m=27 \alpha \beta \gamma=-27=\frac{-D}{A} \\ & \Rightarrow \omega^{3}+9 \omega^{2}-63 \omega+27=0 \end{aligned}$ | \& M1

M1

A3

A1

[6] \& | Attempt to find sums and products of roots (at least two of three) |
| :--- |
| Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation |
| Correct coefficients consistent with $x^{3}$ coefficient, minus 1 each error Correct cubic equation c.a.o. | <br>

\hline 6(i) \& $$
\frac{1}{r+2}-\frac{1}{r+3}=\frac{r+3-(r+2)}{(r+2)(r+3)}=\frac{1}{(r+2)(r+3)}
$$ \& M1

A1
[2] \& Attempt at common denominator <br>

\hline 6(ii) \& $$
\begin{aligned}
& \sum_{r=1}^{50} \frac{1}{(r+2)(r+3)}=\sum_{r=1}^{50}\left[\frac{1}{r+2}-\frac{1}{r+3}\right] \\
& =\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots . . \\
& +\left(\frac{1}{51}-\frac{1}{52}\right)+\left(\frac{1}{52}-\frac{1}{53}\right) \\
& =\frac{1}{3}-\frac{1}{53}=\frac{50}{159}
\end{aligned}
$$ \& M1

M1,
M1

A1

[4] \& | Correct use of part (i) (may be implied) |
| :--- |
| First two terms in full |
| Last two terms in full (allow in terms of $n$ ) |
| Give B4 for correct without working Allow 0.314 (3s.f.) | <br>

\hline
\end{tabular}

| 7 | $\sum_{r=1}^{n} 3^{r-1}=\frac{3^{n}-1}{2}$ <br> $n=1$, LHS $=$ RHS $=1$ <br> Assume true for $n=k$ <br> Next term is $3^{k}$ <br> Add to both sides <br> RHS $=\frac{3^{k}-1}{2}+3^{k}$ | B1 <br> E1 <br> M1 | Assuming true for $k$ <br> Attempt to add $3^{k}$ to RHS |
| :--- | :--- | :--- | :--- |
| $=\frac{3^{k}-1+2 \times 3^{k}}{2}$ | A1 | c.a.o. with correct simplification |  |
| $=\frac{3 \times 3^{k}-1}{2}$ |  |  |  |
| $=\frac{3^{k+1}-1}{2}$ |  |  |  |
| But this is the given result with $k+1$ replacing <br> $k$. Therefore if it is true for $k$ it is true for $k+1$. <br> Since it is true for $k=1$, it is true for $k=1,2,3$ <br> and so true for all positive integers. | E1 | Dependent on previous E1 and <br> immediately previous A1 |  |

Section A Total: 36

| Section B |  |  |  |
| :---: | :---: | :---: | :---: |
| 8(i) 8(ii) | $(2,0),(-2,0),\left(0, \frac{-4}{3}\right)$ | B1 <br> B1 <br> B1 <br> [3] | 1 mark for each s.c. B2 for $2,-2, \frac{-4}{3}$ |
|  | $x=3, x=-1, x=1, y=0$ | $\begin{aligned} & \text { B4 } \\ & {[4]} \end{aligned}$ | Minus 1 for each error |
| 8(iii) |  |  |  |
|  | Large positive $x, y \rightarrow 0^{+}$, approach from above (e.g. consider $x=100$ ) <br> Large negative $x, y \rightarrow 0^{-}$, approach from below (e.g. consider $x=-100$ ) | B1 <br> B1 <br> M1 <br> [3] | Direction of approach must be clear for each B mark <br> Evidence of method required |
| 8(iv) | Curve <br> 4 branches correct <br> Asymptotes correct and labelled <br> Intercepts labelled | $\begin{aligned} & \text { B2 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Minus 1 each error, min 0 |
|  |  | [4] |  |


| 9(i) | $x=1-2 \mathrm{j}$ | $\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| 9(ii) | Complex roots occur in conjugate pairs. A cubic has three roots, so one must be real. Or, valid argument involving graph of a cubic or behaviour for large positive and large negative $x$. | E1 [1] |  |
| 9(iii) |  |  |  |
|  | Scheme A |  |  |
|  | $(x-1-2 \mathrm{j})(x-1+2 \mathrm{j})=\mathrm{x}^{2}-2 x+5$ | M1 | Attempt to use factor theorem |
|  | $(x-\alpha)\left(x^{2}-2 x+5\right)=x^{3}+A x^{2}+B x+15$ | $\begin{gathered} \text { A1 } \\ \text { A1(ft) } \end{gathered}$ | Correct factors <br> Correct quadratic(using their factors) |
|  | comparing constant term: | M1 | Use of factor involving real root |
|  | $-5 \alpha=15 \Rightarrow \alpha=-3$ | M1 | Comparing constant term |
|  | So real root is $x=-3$ | A1(ft) | From their quadratic |
|  | $(x+3)\left(x^{2}-2 x+5\right)=x^{3}+A x^{2}+B x+15$ | M1 | Expand LHS |
|  | $\Rightarrow x^{3}+x^{2}-x+15=x^{3}+A x^{2}+B x+15$ | M1 | Compare coefficients |
|  | $\Rightarrow A=1, B=-1$ | A1 | 1 mark for both values |
|  | OR | [9] |  |
|  | Scheme B |  |  |
|  | Product of roots $=-15$ | M1 |  |
|  |  | A1 | Attempt to use product of roots |
|  | $(1+2 \mathrm{j})(1-2 \mathrm{j})=5$ | M1 | Product is -15 |
|  |  | A1 | Multiplying complex roots |
|  | $\Rightarrow 5 \alpha=-15$ | A1 |  |
|  | $\begin{aligned} & \Rightarrow \alpha=-3 \\ & \text { Sum of roots }=-A \end{aligned}$ | A1 | c.a.o. |
|  | $\Rightarrow-A=1+2 j+1-2 j-3=-1 \Rightarrow A=1$ | M1 | Attempt to use sum of roots |
|  | Substitute root $x=-3$ into cubic $(-3)^{3}+(-3)^{2}-3 B+15=0 \Rightarrow B=-1$ | M1 | Attempt to substitute, or to use sum |
|  | $A=1$ and $B=-1$ | $\begin{aligned} & \text { A1 } \\ & \text { [9] } \end{aligned}$ | c.a.o. |
|  | OR |  |  |
|  | Scheme C |  |  |
|  | $\alpha=-3$ | 6 | As scheme A, or other valid method |
|  | $(1+2 \mathrm{j})^{3}+A(1+2 \mathrm{j})^{2}+B(1+2 \mathrm{j})+15=0$ | M1 | Attempt to substitute root |
|  | $\begin{aligned} & \Rightarrow A(-3+4 \mathrm{j})+B(1+2 \mathrm{j})+4-2 \mathrm{j}=0 \\ & \Rightarrow-3 A+B+4=0 \text { and } 4 A+2 B-2=0 \end{aligned}$ | M1 | Attempt to equate real and imaginary parts, or equivalent. |
|  | $\Rightarrow A=1$ and $B=-1$ | $\begin{aligned} & \text { A1 } \\ & \text { [9] } \end{aligned}$ | c.a.o. |
|  | 24 |  |  |

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Section B (continued)} <br>
\hline 10(i) \& $$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ccc}
1 & -2 & k \\
2 & 1 & 2 \\
3 & 2 & -1
\end{array}\right)\left(\begin{array}{ccc}
-5 & -2+2 k & -4-k \\
8 & -1-3 k & -2+2 k \\
1 & -8 & 5
\end{array}\right) \\
& =\left(\begin{array}{ccc}
k-21 & 0 & 0 \\
0 & k-21 & 0 \\
0 & 0 & k-21
\end{array}\right) \\
& n=21
\end{aligned}
$$ \& M1

A1
[2] \& Attempt to multiply matrices (can be implied) <br>

\hline \multirow[t]{2}{*}{10(ii)} \& $$
\mathbf{A}^{-1}=\frac{1}{k-21}\left(\begin{array}{ccc}
-5 & -2+2 k & -4-k \\
8 & -1-3 k & -2+2 k \\
1 & -8 & 5
\end{array}\right)
$$ \& M1

M1

A1 \& | Use of B |
| :--- |
| Attempt to use their answer to (i) Correct inverse | <br>

\hline \& $k \neq 21$ \& A1
[4] \& Accept $n$ in place of 21 for full marks <br>

\hline \multirow[t]{3}{*}{| 10 |
| :--- |
| (iii) |} \& Scheme A

$$
\frac{1}{-20}\left(\begin{array}{ccc}
-5 & 0 & -5 \\
8 & -4 & 0 \\
1 & -8 & 5
\end{array}\right)\left(\begin{array}{c}
1 \\
12 \\
3
\end{array}\right)=\frac{1}{-20}\left(\begin{array}{l}
-20 \\
-40 \\
-80
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 }
\end{aligned}
$$
\] \& Attempt to use inverse Their inverse with $k=1$ <br>

\hline \& | $x=1, y=2, z=4$ |
| :--- |
| OR |
| Scheme B | \& \[

$$
\begin{aligned}
& \text { A3 } \\
& \text { [5] }
\end{aligned}
$$
\] \& One for each correct (ft) <br>

\hline \& Attempt to eliminate 2 variables Substitute in their value to attempt to find others $x=1, y=2, z=4$ \& M1
M1
A3
[5] \& s.c. award 2 marks only for $x=1, y=2, z=4$ with no working. <br>
\hline \& \& \& Section B Total: 36 <br>
\hline \& \& \& Total: 72 <br>
\hline
\end{tabular}

## Mark Scheme 4756 June 2007

| 1(a)(i) |  | B2 | Must include a sharp point at O and have infinite gradient at $\theta=\pi$ <br> Give B1 for $r$ increasing from zero for $0<\theta<\pi$, or decreasing to zero for $-\pi<\theta<0$ |
| :---: | :---: | :---: | :---: |
| (ii) | Area is $\int \frac{1}{2} r^{2} \mathrm{~d} \theta=\int_{0}^{\frac{1}{2} \pi} \frac{1}{2} a^{2}(1-\cos \theta)^{2} \mathrm{~d} \theta$ $\begin{aligned} & =\frac{1}{2} a^{2} \int_{0}^{\frac{1}{2} \pi}\left(1-2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta)\right) \mathrm{d} \theta \\ & \left.=\frac{1}{2} a^{2}\left[\frac{3}{2} \theta-2 \sin \theta+\frac{1}{4} \sin 2 \theta\right)\right]_{0}^{\frac{1}{2} \pi} \\ & =\frac{1}{2} a^{2}\left(\frac{3}{4} \pi-2\right) \end{aligned}$ | M1 <br> A1 <br> B1 <br> B1B1 ft <br> B1 <br> 6 | For integral of $(1-\cos \theta)^{2}$ <br> For a correct integral expression including limits (may be implied by later work) <br> Using $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$ <br> Integrating $a+b \cos \theta$ and $k \cos 2 \theta$ <br> Accept $0.178 a^{2}$ |
| (b) | Put $x=2 \sin \theta$ $\begin{aligned} & \text { Integral is } \int_{0}^{\frac{1}{6} \pi} \frac{1}{\left(4-4 \sin ^{2} \theta\right)^{\frac{3}{2}}}(2 \cos \theta) \mathrm{d} \theta \\ & \quad=\int_{0}^{\frac{1}{6} \pi} \frac{2 \cos \theta}{8 \cos ^{3} \theta} \mathrm{~d} \theta=\int_{0}^{\frac{1}{6} \pi} \frac{1}{4} \sec ^{2} \theta \mathrm{~d} \theta \\ & \quad=\left[\frac{1}{4} \tan \theta\right]_{0}^{\frac{1}{6} \pi} \\ & \quad=\frac{1}{4} \times \frac{1}{\sqrt{3}}=\frac{1}{4 \sqrt{3}} \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 ag | or $x=2 \cos \theta$ <br> Limits not required <br> For $\int \sec ^{2} \theta \mathrm{~d} \theta=\tan \theta$ <br> $S R$ If $x=2 \tanh u$ is used <br> M1 for $\frac{1}{4} \sinh \left(\frac{1}{2} \ln 3\right)$ <br> A1 for $\frac{1}{8}\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)=\frac{1}{4 \sqrt{3}}(\max 2 / 4)$ |
| (c)(i) | $\mathrm{f}^{\prime}(x)=\frac{-2}{\sqrt{1-4 x^{2}}}$ | B2 | Give B1 for any non-zero real multiple of this (or for $\frac{-2}{\sin y}$ etc) |
| (ii) | $\begin{aligned} \mathrm{f}^{\prime}(x) & =-2\left(1-4 x^{2}\right)^{-\frac{1}{2}} \\ & =-2\left(1+2 x^{2}+6 x^{4}+\ldots\right) \\ \mathrm{f}(x) & =C-2 x-\frac{4}{3} x^{3}-\frac{12}{5} x^{5}+\ldots \\ \mathrm{f}(0) & =\frac{1}{2} \pi \Rightarrow C=\frac{1}{2} \pi \\ \mathrm{f}(x) & =\frac{1}{2} \pi-2 x-\frac{4}{3} x^{3}-\frac{12}{5} x^{5}+\ldots \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> 4 | Binomial expansion ( 3 terms, $n=-\frac{1}{2}$ ) <br> Expansion of $\left(1-4 x^{2}\right)^{-\frac{1}{2}}$ correct <br> (accept unsimplified form) <br> Integrating series for $\mathrm{f}^{\prime}(x)$ <br> Must obtain a non-zero $x^{5}$ term $C$ not required |


| OR by repeated differentiation <br> Finding $\mathrm{f}^{(5)}(x)$ <br> Evaluating $\mathrm{f}^{(5)}(0) \quad(=-288)$ $\begin{aligned} & \mathrm{f}^{\prime}(x)=-2-4 x^{2}-12 x^{4}+\ldots \\ & \mathrm{f}(x)=\frac{1}{2} \pi-2 x-\frac{4}{3} x^{3}-\frac{12}{5} x^{5}+\ldots \end{aligned}$ | Must obtain a non-zero value ft from (c)(i) when B1 given |
| :---: | :---: |


| 2 (a) | $\begin{aligned} & (\cos \theta+\mathrm{j} \sin \theta)^{5} \\ & \quad=c^{5}+5 \mathrm{j} c^{4} s-10 c^{3} s^{2}-10 \mathrm{j}^{2} s^{3}+5 c s^{4}+\mathrm{j} s^{5} \end{aligned}$ <br> Equating imaginary parts $\begin{aligned} \sin 5 \theta & =5 c^{4} s-10 c^{2} s^{3}+s^{5} \\ & =5\left(1-s^{2}\right)^{2} s-10\left(1-s^{2}\right) s^{3}+s^{5} \\ & =5 s-10 s^{3}+5 s^{5}-10 s^{3}+10 s^{5}+s^{5} \\ & =5 \sin \theta-20 \sin ^{3} \theta+16 \sin ^{5} \theta \end{aligned}$ | M1 <br> M1 <br> A1 <br> M1 <br> A1 ag <br> 5 |  |
| :---: | :---: | :---: | :---: |
| (b)(i) | $\begin{aligned} & \|-2+2 \mathrm{j}\|=\sqrt{8}, \quad \arg (-2+2 \mathrm{j})=\frac{3}{4} \pi \\ & r=\sqrt{2} \\ & \theta=\frac{1}{4} \pi \\ & \theta=\frac{11}{12} \pi, \quad-\frac{5}{12} \pi \end{aligned}$ | B1B1 <br> B1 ft <br> B1 ft <br> M1 <br> A1 $6$ | Accept 2.8; 2.4, $135^{\circ}$ <br> (Implies B1 for $\sqrt{8}$ ) <br> One correct (Implies B1 for $\frac{3}{4} \pi$ ) <br> Adding or subtracting $\frac{2}{3} \pi$ <br> Accept $\theta=\frac{1}{4} \pi+\frac{2}{3} k \pi, k=0,1,-1$ |
| (ii) |  | B2 | Give B1 for two of B, C, M in the correct quadrants <br> Give B1 ft for all four points in the correct quadrants |
| (iii) | $\begin{aligned} & \|w\|=\frac{1}{2} \sqrt{2} \\ & \arg w=\frac{1}{2}\left(\frac{1}{4} \pi+\frac{11}{12} \pi\right)=\frac{7}{12} \pi \end{aligned}$ | $\begin{array}{\|ll\|} \hline \mathrm{B} 1 \mathrm{ft} & \\ \mathrm{~B} 1 & \\ \hline \end{array}$ | Accept 0.71 <br> Accept 1.8 |
| (iv) | $\begin{aligned} & \left\|w^{6}\right\|=\left(\frac{1}{2} \sqrt{2}\right)^{6}=\frac{1}{8} \\ & \arg \left(w^{6}\right)=6 \times \frac{7}{12} \pi=\frac{7}{2} \pi \\ & w^{6}=\frac{1}{8}\left(\cos \frac{7}{2} \pi+j \sin \frac{7}{2} \pi\right) \\ & \quad=-\frac{1}{8} j \end{aligned}$ | M1 <br> A1 ft <br> A1 <br> 3 | Obtaining either modulus or argument Both correct (ft) <br> Allow from $\arg w=\frac{1}{4} \pi$ etc |
|  |  |  | $S R$ If B, C interchanged on diagram <br> (ii) B 1 <br> (iii) B 1 B 1 for $-\frac{1}{12} \pi$ <br> (iv) M1A1A1 |


| 3 (i) | $\begin{aligned} & \operatorname{det}(\mathbf{M}-\lambda \mathbf{I})=(3-\lambda)[(3-\lambda)(-4-\lambda)-4] \\ & \quad-5[5(-4-\lambda)+4]+2[-10-2(3-\lambda)] \\ & =(3-\lambda)\left(-16+\lambda+\lambda^{2}\right)-5(-16-5 \lambda)+2(-16+2 \lambda) \\ & =-48+19 \lambda+2 \lambda^{2}-\lambda^{3}+80+25 \lambda-32+4 \lambda \\ & =48 \lambda+2 \lambda^{2}-\lambda^{3} \end{aligned}$ <br> Characteristic equation is $\lambda^{3}-2 \lambda^{2}-48 \lambda=0$ | M1 <br> A1 <br> M1 <br> A1 ag | Obtaining $\operatorname{det}(\mathbf{M}-\lambda \mathbf{I})$ <br> Any correct form <br> Simplification |
| :---: | :---: | :---: | :---: |
| (ii) | $\lambda(\lambda-8)(\lambda+6)=0$ <br> Other eigenvalues are 8,-6 $\text { When } \begin{aligned} \lambda=8, & 3 x+5 y+2 z=8 x \\ ( & 5 x+3 y-2 z=8 y \\ & 2 x-2 y-4 z=8 z \end{aligned}$ $y=x \text { and } z=0 \text {; eigenvector is }\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)$ <br> When $\lambda=-6, \quad 3 x+5 y+2 z=-6 x+1.2 z=-6 y$ <br> $y=-x, z=-2 x ;$ eigenvector is $\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Solving to obtain a non-zero value <br> Two independent equations <br> Obtaining a non-zero eigenvector <br> $(-5 x+5 y+2 z=8 x$ etc can earn M0M1) <br> Two independent equations <br> Obtaining a non-zero eigenvector |
| (iii) | $\begin{aligned} & \mathbf{P}=\left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & -2 \end{array}\right) \\ & \mathbf{D}=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -6 \end{array}\right)^{2} \\ &=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 36 \end{array}\right) \end{aligned}$ | B1 ft <br> M1 <br> A1 | B0 if $\mathbf{P}$ is clearly singular <br> Order must be consistent with $\mathbf{P}$ when B1 has been earned |
| (iv) | $\begin{aligned} \mathbf{M}^{3} & -2 \mathbf{M}^{2}-48 \mathbf{M}=\mathbf{0} \\ \mathbf{M}^{3} & =2 \mathbf{M}^{2}+48 \mathbf{M} \\ \mathbf{M}^{4} & =2 \mathbf{M}^{3}+48 \mathbf{M}^{2} \\ & =2\left(2 \mathbf{M}^{2}+48 \mathbf{M}\right)+48 \mathbf{M}^{2} \\ & =52 \mathbf{M}^{2}+96 \mathbf{M} \end{aligned}$ | M1 <br> M1 <br> A1 <br> 3 |  |


| 4 (a) | $\begin{aligned} \int_{0}^{1} \frac{1}{\sqrt{9 x^{2}+16}} \mathrm{~d} x & =\left[\frac{1}{3} \operatorname{arsinh} \frac{3 x}{4}\right]_{0}^{1} \\ & =\frac{1}{3} \operatorname{arsinh} \frac{3}{4} \\ & =\frac{1}{3} \ln \left(\frac{3}{4}+\sqrt{\frac{9}{16}+1}\right) \\ & =\frac{1}{3} \ln 2 \end{aligned}$ | M1 <br> A1 <br> A1 <br> M1 <br> A1 | For arsinh or for any sinh substitution <br> For $\frac{3}{4} x \quad$ or for $3 x=4 \sinh u$ <br> For $\frac{1}{3}$ or for $\int \frac{1}{3} \mathrm{~d} u$ |
| :---: | :---: | :---: | :---: |
|  | OR <br> M2 $\begin{aligned} & {\left[\frac{1}{3} \ln \left(3 x+\sqrt{9 x^{2}+16}\right)\right]_{0}^{1}} \\ & =\frac{1}{3} \ln 8-\frac{1}{3} \ln 4 \\ & =\frac{1}{3} \ln 2 \end{aligned}$ <br> A1A1 |  | For $\ln \left(k x+\sqrt{k^{2} x^{2}+\ldots}\right)$ [ Give M1 for $\ln \left(a x+\sqrt{b x^{2}+\ldots}\right)$ ] or $\frac{1}{3} \ln \left(x+\sqrt{x^{2}+\frac{16}{9}}\right)$ |
| (b)(i) | $\begin{aligned} 2 \sinh x \cosh x & =2 \times \frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \\ & =\frac{1}{2}\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right) \\ & =\sinh 2 x \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ $2$ | $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)$ <br> For completion |
| (ii) | $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=20 \sinh x-6 \sinh 2 x \\ & \text { For stationary points, } \\ & 20 \sinh x-12 \sinh x \cosh x=0 \\ & 4 \sinh x(5-3 \cosh x)=0 \\ & \sinh x=0 \text { or } \cosh x=\frac{5}{3} \end{aligned} \quad \begin{aligned} & x=0, \quad y=17 \\ & x=( \pm) \ln \left(\frac{5}{3}+\sqrt{\frac{25}{9}-1}\right)=\ln 3 \\ & y=10\left(3+\frac{1}{3}\right)-\frac{3}{2}\left(9+\frac{1}{9}\right)=\frac{59}{3} \\ & x=-\ln 3, \quad y=\frac{59}{3} \end{aligned}$ | B1B1 <br> M1 <br> A1 <br> A1 ag <br> A1 ag <br> B1 | When exponential form used, give B1 for any 2 terms correctly differentiated <br> Solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ to obtain a value of $\sinh x, \cosh x$ or $\mathrm{e}^{x}($ or $x=0$ stated) <br> Correctly obtained <br> Correctly obtained <br> The last A1A1 ag can be replaced by B1B1 ag for a full verification |
| (iii) | $\begin{aligned} & {\left[20 \sinh x-\frac{3}{2} \sinh 2 x\right]_{-\ln 3}^{\ln 3}} \\ & \quad=\left\{10\left(3-\frac{1}{3}\right)-\frac{3}{4}\left(9-\frac{1}{9}\right)\right\} \times 2 \\ & \quad=\left(\frac{80}{3}-\frac{20}{3}\right) \times 2=40 \end{aligned}$ | B1B1 <br> M1 <br> A1 ag <br> 4 | When exponential form used, give B1 for any 2 terms correctly integrated <br> Exact evaluation of $\sinh (\ln 3)$ and $\sinh (2 \ln 3)$ |


| 5 (i) |  | B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> 6 | Maximum on LH branch and minimum on RH branch Crossing axes correctly <br> Two branches with positive gradient Crossing axes correctly <br> Maximum on LH branch and minimum on RH branch Crossing positive $y$-axis and minimum in first quadrant |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} y & =\frac{(x+k)(x-2 k)+2 k^{2}+2 k}{x+k} \\ & =x-2 k+\frac{2 k(k+1)}{x+k} \end{aligned}$ <br> Straight line when $2 k(k+1)=0$ $k=0, \quad k=-1$ | M1 <br> A1 (ag) <br> B1B1 <br> 4 | Working in either direction <br> For completion |
| (iii)(A) | Hyperbola | B1 |  |
| (B) | $\begin{aligned} & x=-k \\ & y=x-2 k \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ $2$ |  |


| (iv) |  | B1 B1 B1 B1 B1 | Asymptotes correctly drawn <br> Curve approaching asymptotes correctly (both branches) <br> Intercept 2 on $y$-axis, and not crossing the $x$-axis <br> Points A and B marked, with minimum point between them <br> Points A and B at the same height $(y=1)$ |
| :---: | :---: | :---: | :---: |

# Mark Scheme 4757 

 June 2007| 1 (i) | $\begin{aligned} & \mathbf{d}_{K}=\left(\begin{array}{c} 8 \\ -1 \\ -14 \end{array}\right) \times\left(\begin{array}{c} 6 \\ 2 \\ -5 \end{array}\right)=\left(\begin{array}{c} 33 \\ -44 \\ 22 \end{array}\right)\left[=11\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)\right] \\ & \mathbf{d}_{L}=\left(\begin{array}{c} 8 \\ -1 \\ -14 \end{array}\right) \times\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{c} 15 \\ -20 \\ 10 \end{array}\right)\left[=5\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)\right] \end{aligned}$ <br> Hence $K$ and $L$ are parallel <br> For a point on $K, \quad z=0, x=3, y=4$ <br> i.e. $(3,4,0)$ <br> For a point on $L, \quad z=0, x=6, y=28$ <br> i.e. $(6,28,0)$ | M1* <br> A1* <br> A1 <br> M1*A1* <br> A1* | Finding direction of $K$ or $L$ One direction correct <br> * These marks can be earned anywhere in the question <br> Correctly shown <br> Finding one point on $K$ or $L$ or (6, 0, 2) or ( $0,8,-2$ ) etc $\operatorname{Or}(27,0,14)$ or $(0,36,-4)$ etc |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & {\left[\left(\begin{array}{c} 6 \\ 28 \\ 0 \end{array}\right)-\left(\begin{array}{l} 3 \\ 4 \\ 0 \end{array}\right)\right] \times\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)=\left(\begin{array}{c} 3 \\ 24 \\ 0 \end{array}\right) \times\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)=\left(\begin{array}{c} 48 \\ -6 \\ -84 \end{array}\right)} \\ & \text { Distance is } \frac{\sqrt{48^{2}+6^{2}+84^{2}}}{\sqrt{3^{2}+4^{2}+2^{2}}}=\frac{\sqrt{9396}}{\sqrt{29}}=18 \end{aligned}$ | M1 <br> M1 <br> A1 <br> 9 | For $(\mathbf{b}-\mathbf{a}) \times \mathbf{d}$ <br> Correct method for finding distance |
|  | $\text { OR }\left(\begin{array}{c} 6+3 \lambda-3 \\ 28-4 \lambda-4 \\ 2 \lambda \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -4 \\ 2 \end{array}\right)=0$ <br> M1 $-87+29 \lambda=0, \quad \lambda=3$ <br> M1 <br> Distance is $\sqrt{12^{2}+12^{2}+6^{2}}=18$ |  | For $(\mathbf{b}+\lambda \mathbf{d}-\mathbf{a}) . \mathbf{d}=0$ <br> Finding $\lambda$, and the magnitude |
| (ii) | Distance from $(3,4,0)$ to $R$ is $\begin{aligned} &\left\|\frac{2 \times 3+4-0-40}{\sqrt{2^{2}+1^{2}+1^{2}}}\right\| \\ &=\frac{30}{\sqrt{6}}=\frac{30 \sqrt{6}}{6}=5 \sqrt{6} \end{aligned}$ | M1A1 ft <br> A1 ag 3 |  |
| (iii) | $K, M \text { intersect if } \begin{align*} 1+5 \lambda & =3+3 \mu  \tag{1}\\ -4-4 \lambda & =4-4 \mu  \tag{2}\\ 3 \lambda & =2 \mu \tag{3} \end{align*}$ <br> Solving (2) and (3): $\lambda=4, \mu=6$ <br> Check in (1): LHS $=1+20=21$, $\mathrm{RHS}=3+18=21$ <br> Hence $K, M$ intersect, at $(21,-20,12)$ | M1  <br> A1 ft  <br> M1M1  <br> M1A1  <br> A1  <br>  7 | At least 2 eqns, different parameters <br> Two equations correct <br> Intersection correctly shown Can be awarded after M1A1M1M0M0 |
|  | OR $M$ meets $P$ when $8(1+5 \lambda)-(-4-4 \lambda)-14(3 \lambda)=20$ <br> $M$ meets $Q$ when $\begin{equation*} 6(1+5 \lambda)+2(-4-4 \lambda)-5(3 \lambda)=26 \tag{A1} \end{equation*}$ <br> Both equations have solution $\lambda=4$ <br> Point is on $P, Q$ and $M$; hence on $K$ and $M$ <br> M2 <br> Point of intersection is $(21,-20,12)$ |  | Intersection of $M$ with both $P$ and Q |


| (iv) $\left[\left(\begin{array}{c}6 \\ 28 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ -4 \\ 0\end{array}\right)\right] \cdot\left[\left(\begin{array}{c}3 \\ -4 \\ 2\end{array}\right) \times\left(\begin{array}{c}5 \\ -4 \\ 3\end{array}\right)\right]=\left(\begin{array}{c}5 \\ 32 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-4 \\ 1 \\ 8\end{array}\right)=12$ | M 1 A 1 ft <br> M 1 <br> For evaluating $\mathbf{d}_{L} \times \mathbf{d}_{M}$ <br> For $(\mathbf{b}-\mathbf{c}) .\left(\mathbf{d}_{L} \times \mathbf{d}_{M}\right)$ |
| :---: | :--- | :--- | :--- |
| Distance is $\frac{12}{\sqrt{4^{2}+1^{2}+8^{2}}}=\frac{12}{9}=\frac{4}{3}$ | At |
| A 1 | Numerical expression for distance |


| 2 (i) | $\begin{aligned} & \frac{\partial z}{\partial x}=y^{2}-8 x y-6 x^{2}+54 x-36 \\ & \frac{\partial z}{\partial y}=2 x y-4 x^{2} \end{aligned}$ | $\left\|\begin{array}{ll} \mathrm{B} 2 & \\ \mathrm{~B} 1 & \\ & 3 \end{array}\right\|$ | Give B1 for 3 terms correct |
| :---: | :---: | :---: | :---: |
| (ii) | At stationary points, $\frac{\partial z}{\partial x}=0$ and $\frac{\partial z}{\partial y}=0$ <br> When $x=0, y^{2}-36=0$ $y= \pm 6 ; \text { points }(0,6,20) \text { and }(0,-6,20)$ <br> When $y=2 x, 4 x^{2}-16 x^{2}-6 x^{2}+54 x-36=0$ $\begin{gathered} -18 x^{2}+54 x-36=0 \\ x=1,2 \end{gathered}$ <br> Points (1, 2, 5) and (2, 4, 8) | M1 <br> M1 <br> A1A1 <br> M1 <br> M1A1 <br> A1 <br> 8 | If A0, give A 1 for $y= \pm 6$ <br> or $y=2,4$ <br> A0 if any extra points given |
| (iii) | When $x=2, z=2 y^{2}-16 y+40$ <br> When $y=4, z=-2 x^{3}+11 x^{2}-20 x+20$ $\left(\frac{\mathrm{d}^{2} z}{\mathrm{~d} x^{2}}=-12 x+22=-2\right.$ when $\left.x=2\right)$ <br> The point is a minimum on one section and a maximum on the other; so it is neither a maximum nor a minimum | B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 | 'Upright' parabola <br> $(2,4,8)$ identified as a minimum (in the first quadrant) <br> 'Negative cubic' curve <br> $(2,4,8)$ identified as a stationary point <br> Fully correct (unambiguous minimum and maximum) |
| (iv) | Require $\frac{\partial z}{\partial x}=-36$ and $\frac{\partial z}{\partial y}=0$ <br> When $x=0, y^{2}-36=-36$ $y=0 ; \text { point }(0,0,20)$ <br> When $\begin{gathered} y=2 x, 4 x^{2}-16 x^{2}-6 x^{2}+54 x-36=-36 \\ -18 x^{2}+54 x=0 \\ x=0,3 \end{gathered}$ <br> $x=0$ gives $(0,0,20)$ same as above <br> $x=3$ gives $(3,6,-7)$ | M1 <br> M1 <br> A1 <br> M1 <br> M1 <br> A1 <br> A1 | $\frac{\partial z}{\partial x}=36$ can earn all M marks <br> Solving to obtain $x$ (or $y$ ) or stating 'no roots' if appropriate (e.g. when +36 has been used) |


| 3 (i) | $\begin{aligned} 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} & =1+\left(x-\frac{1}{4 x}\right)^{2} \\ & =1+x^{2}-\frac{1}{2}+\frac{1}{16 x^{2}}=x^{2}+\frac{1}{2}+\frac{1}{16 x^{2}} \\ & =\left(x+\frac{1}{4 x}\right)^{2} \end{aligned}$ <br> Arc length is $\int_{1}^{a}\left(x+\frac{1}{4 x}\right) \mathrm{d} x$ $\begin{aligned} & =\left[\frac{1}{2} x^{2}+\frac{1}{4} \ln x\right]_{1}^{a} \\ & =\frac{1}{2} a^{2}+\frac{1}{4} \ln a-\frac{1}{2} \end{aligned}$ | M1 <br> A1 <br> M1 <br> M1 <br> A1 ag 5 | For $\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x$ |
| :---: | :---: | :---: | :---: |
| (ii) | Curved surface area is $\int 2 \pi x \mathrm{ds}$ $\begin{aligned} & =\int_{1}^{4} 2 \pi x\left(x+\frac{1}{4 x}\right) \mathrm{d} x \\ & =2 \pi\left[\frac{1}{3} x^{3}+\frac{1}{4} x\right]_{1}^{4} \\ & =\frac{87 \pi}{2} \quad(\approx 137) \end{aligned}$ | M1 <br> A1 ft <br> M1 <br> A1 <br> A1 <br> 5 | Any correct integral form (including limits) <br> for $\frac{1}{3} x^{3}+\frac{1}{4} x$ |
| (iii) | $\begin{aligned} \rho & =\frac{\left(1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}}=\frac{\left(a+\frac{1}{4 a}\right)^{3}}{1+\frac{1}{4 a^{2}}} \\ & =\frac{a\left(a+\frac{1}{4 a}\right)^{3}}{a+\frac{1}{4 a}}=a\left(a+\frac{1}{4 a}\right)^{2} \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 ag } & 5 \end{array}$ | any form, in terms of $x$ or $a$ any form, in terms of $x$ or $a$ <br> Formula for $\rho$ or $\kappa$ $\rho$ or $\kappa$ correct, in any form, in terms of $x$ or $a$ |
| (iv) | $\begin{aligned} & \text { At }\left(1, \frac{1}{2}\right), \rho=\left(\frac{5}{4}\right)^{2}=\frac{25}{16} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=1-\frac{1}{4}=\frac{3}{4}, \text { so } \hat{\mathbf{n}}=\binom{-\frac{3}{5}}{\frac{4}{5}} \\ & \mathbf{c}=\binom{1}{\frac{1}{2}}+\frac{25}{16}\binom{-\frac{3}{5}}{\frac{4}{5}} \end{aligned}$ <br> Centre of curvature is $\left(\frac{1}{16}, \frac{7}{4}\right)$ | M1 <br> A1 <br> M1 <br> A1A1 $5$ | Finding gradient Correct normal vector (not necessarily unit vector); may be in terms of $x$ OR M2A1 for obtaining equation of normal line at a general point and differentiating partially |

(v) | Differentiating partially w.r.t. $p$ |  |
| :---: | :--- | :--- |
| $0=x^{2}-2 p \ln x$ | M1 |
| $p=\frac{x^{2}}{2 \ln x}$ and $y=\frac{x^{4}}{2 \ln x}-\frac{x^{4}}{4 \ln x}$ | A1 |
| $y=\frac{x^{4}}{4 \ln x}$ | M1 |
| A1 |  |
|  | $\mathbf{4}$ |

| 4 (i) | By Lagrange's theorem, a proper subgroup has order 2 or 5 A group of prime order is cyclic Hence every proper subgroup is cyclic |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ |  | Using Lagrange (need not be mentioned explicitly) or equivalent For completion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ii) | e.g. $\begin{aligned} & 2^{2}=4,2^{3}=8,2^{4}=5,2^{5}=10, \\ & 2^{6}=9,2^{7}=7,2^{8}=3,2^{9}=6,2^{10}=1 \end{aligned}$ <br> 2 has order 10 , hence $M$ is cyclic |  |  |  |  |  |  |  |  | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \text { A1 } \\ & \mathrm{A} 1 \end{aligned}$ |  | Considering order of an element Identifying an element of order 10 <br> (2, 6, 7 or 8 ) <br> Fully justified <br> For conclusion (can be awarded after M1A1A0) |
| (iii) | $\begin{aligned} & \{1,10\} \\ & \{1,3,4,5,9\} \end{aligned}$ |  |  |  |  |  |  |  |  | $\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \end{aligned}$ |  | Ignore $\{1\}$ and $M$ <br> Deduct 1 mark (from B1B2) for each (proper) subgroup given in excess of 2 |
| (iv) | E is th <br> A, C, $\mathrm{B}, \mathrm{D},$ | A, C, G, I are rotations <br> B, D, F, H, J are reflections |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \end{array}$ |  | Considering elements of order 2 (or equivalent) Implied by four of $B, D, F, H, J$ in the same set <br> Give A1 if one element is in the wrong set; or if two elements are interchanged |
| (v) | $P$ and $M$ are not isomorphic $M$ is abelian, $P$ is non-abelian |  |  |  |  |  |  |  |  | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ |  | Valid reason <br> e.g. $M$ has one element of order 2 <br> $P$ has more than one |
| (vi) |  | A | B | C | E | F | G | H | I | B3 | Give B2 for 7 correct B1 for 4 correct |  |
|  | Order | 5 | 2 | 5 | 1 | 2 | 5 | 2 | 5 |  |  |  |
| (vii) | $\begin{aligned} & \{\mathrm{E}, \mathrm{~B}\},\{\mathrm{E}, \mathrm{D}\},\{\mathrm{E}, \mathrm{~F}\},\{\mathrm{E}, \mathrm{H}\},\{\mathrm{E}, \mathrm{~J}\} \\ & \{\mathrm{E}, \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{I}\} \end{aligned}$ |  |  |  |  |  |  |  |  | M1 <br> Al ft <br> B2 cao |  | Ignore $\{\mathrm{E}\}$ and $P$ <br> Subgroups of order 2 <br> Using elements of order 2 <br> (allow two errors/omissions) <br> Correct or ft . A0 if any others given <br> Subgroups of order greater than 2 Deduct 1 mark (from B2) for each extra subgroup given |

Pre-multiplication by transition matrix

| 5 (i) | $\mathbf{P}=\left(\begin{array}{cccc}0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.7 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0\end{array}\right)$ | B2 $\quad 2$ | Give B1 for two columns correct |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathbf{P}^{4}=\left(\begin{array}{cccc} 0.3366 & 0.3317 & 0 & 0 \\ 0.6634 & 0.6683 & 0 & 0 \\ 0 & 0 & 0.3366 & 0.3317 \\ 0 & 0 & 0.6634 & 0.6683 \end{array}\right) \\ & \mathbf{P}^{7}=\left(\begin{array}{cccc} 0 & 0 & 0.3334 & 0.3333 \\ 0 & 0 & 0.6666 & 0.6667 \\ 0.3335 & 0.3333 & 0 & 0 \\ 0.6665 & 0.6667 & 0 & 0 \end{array}\right) \end{aligned}$ | B2 <br> B2 | Give B1 for two non-zero elements correct to at least 2dp <br> Give B1 for two non-zero elements correct to at least 2dp |
| (iii) | $\mathbf{P}^{7}\left(\begin{array}{l}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right)=\left(\begin{array}{l}0.1000 \\ 0.2000 \\ 0.2334 \\ 0.4666\end{array}\right) \quad \mathrm{P}(8$ th letter is C$)=0.233$ | M1 <br> A1 | Using $\mathbf{P}^{7}$ (or $\mathbf{P}^{8}$ ) and initial probs |
| (iv) | $\begin{aligned} & 0.1000 \times 0.3366+0.2000 \times 0.6683 \\ & +0.2334 \times 0.3366+0.4666 \times 0.6683 \\ & \quad=0.558 \end{aligned}$ | M1 <br> M1 <br> A1 ft <br> A1 | Using probabilities for 8th letter Using diagonal elements from $\mathbf{P}^{4}$ |
| (v)(A) <br> (B) | $\mathbf{P}^{n}\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right) \approx\left(\begin{array}{cccc}1 / 3 & 1 / 3 & 0 & 0 \\ 2 / 3 & 2 / 3 & 0 & 0 \\ 0 & 0 & 1 / 3 & 1 / 3 \\ 0 & 0 & 2 / 3 & 2 / 3\end{array}\right)\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right)=\left(\begin{array}{c}0.2333 \\ 0.4667 \\ 0.1 \\ 0.2\end{array}\right)$ <br> $\mathrm{P}((n+1)$ th letter is $A)=0.233$ <br> $\mathbf{P}^{n}\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right) \approx\left(\begin{array}{cccc}0 & 0 & 1 / 3 & 1 / 3 \\ 0 & 0 & 2 / 3 & 2 / 3 \\ 1 / 3 & 1 / 3 & 0 & 0 \\ 2 / 3 & 2 / 3 & 0 & 0\end{array}\right)\left(\begin{array}{c}0.4 \\ 0.3 \\ 0.2 \\ 0.1\end{array}\right)=\left(\begin{array}{c}0.1 \\ 0.2 \\ 0.2333 \\ 0.4667\end{array}\right)$ <br> $\mathrm{P}((n+1)$ th letter is $A)=0.1$ | M1 <br> A1 <br> M1 <br> A1 <br> 4 | Approximating $\mathbf{P}^{n}$ when $n$ is large and even <br> Approximating $\mathbf{P}^{n}$ when $n$ is large and odd |
| (vi) | $\mathbf{Q}=\left(\begin{array}{cccc}0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.6 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0.1\end{array}\right)$ | B1  <br>  1 |  |


| (vii) | $\mathbf{Q}^{n} \rightarrow\left(\begin{array}{llll} 0.1721 & 0.1721 & 0.1721 & 0.1721 \\ 0.3105 & 0.3105 & 0.3105 & 0.3105 \\ 0.1687 & 0.1687 & 0.1687 & 0.1687 \\ 0.3487 & 0.3487 & 0.3487 & 0.3487 \end{array}\right)$ <br> Probabilities are $0.172,0.310,0.169,0.349$ | M1 <br> M1 <br> A2 <br> 4 | Considering $\mathbf{Q}^{n}$ for large $n$ OR at least two eqns for equilib probs <br> Probabilities from equal columns OR solving to obtain equilib probs Give A1 for two correct |
| :---: | :---: | :---: | :---: |
| (viii) | $\begin{gathered} 0.3487 \times 0.1 \times 0.1 \\ =0.0035 \end{gathered}$ | $\begin{array}{\|ll} \mathrm{M} 1 \mathrm{M} 1 & \\ \text { A1 } & 3 \end{array}$ | Using 0.3487 and 0.1 |

Post-multiplication by transition matrix

| 5 (i) | $\mathbf{P}=\left(\begin{array}{cccc}0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0\end{array}\right)$ | $\begin{array}{ll}\mathrm{B} 2 & \\ \end{array}$ | Give B1 for two rows correct |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathbf{P}^{4}=\left(\begin{array}{cccc} 0.3366 & 0.6634 & 0 & 0 \\ 0.3317 & 0.6683 & 0 & 0 \\ 0 & 0 & 0.3366 & 0.6634 \\ 0 & 0 & 0.3317 & 0.6683 \end{array}\right) \\ & \mathbf{P}^{7}=\left(\begin{array}{cccc} 0 & 0 & 0.3335 & 0.6665 \\ 0 & 0 & 0.3333 & 0.6667 \\ 0.3334 & 0.6666 & 0 & 0 \\ 0.3333 & 0.6667 & 0 & 0 \end{array}\right) \end{aligned}$ | B2 | Give B1 for two non-zero elements correct to at least 2dp <br> Give B1 for two non-zero elements correct to at least 2dp |
| (iii) | $\begin{aligned} & \left(\begin{array}{llll} 0.4 & 0.3 & 0.2 & 0.1 \end{array}\right) \mathbf{P}^{7} \\ & \quad=\left(\begin{array}{llll} 0.1000 & 0.2000 & 0.2334 & 0.4666 \end{array}\right) \\ & \quad \mathrm{P}\left(\begin{array}{l} \text { 8th letter is } \mathrm{C})=0.233 \end{array}\right. \end{aligned}$ | M1 A1 $2$ | Using $\mathbf{P}^{7}$ (or $\mathbf{P}^{8}$ ) and initial probs |
| (iv) | $\begin{aligned} & 0.1000 \times 0.3366+0.2000 \times 0.6683 \\ & +0.2334 \times 0.3366+0.4666 \times 0.6683 \\ & \quad=0.558 \end{aligned}$ | M1 <br> M1A1 ft A1 | Using probabilities for 8th letter Using diagonal elements from $\mathbf{P}^{4}$ |
| $(\mathbf{v})(A)$ <br> (B) | $\begin{aligned} & \mathbf{u} \mathbf{P}^{n} \approx\left(\begin{array}{llll} 0.4 & 0.3 & 0.2 & 0.1 \end{array}\right)\left(\begin{array}{cccc} 1 / 3 & 2 / 3 & 0 & 0 \\ 1 / 3 & 2 / 3 & 0 & 0 \\ 0 & 0 & 1 / 3 & 2 / 3 \\ 0 & 0 & 1 / 3 & 2 / 3 \end{array}\right) \\ & \quad=\left(\begin{array}{lll} 0.2333 & 0.4667 & 0.1 \\ 0.2 \end{array}\right) \\ & \mathbf{P}((n+1) \text { th letter is } A)=0.233 \end{aligned}$ $\left.\begin{array}{rl} \mathbf{u} \mathbf{P}^{n} & \approx\left(\begin{array}{llll} 0.4 & 0.3 & 0.2 & 0.1 \end{array}\right)\left(\begin{array}{cccc} 0 & 0 & 1 / 3 & 2 / 3 \\ 0 & 0 & 1 / 3 & 2 / 3 \\ 1 / 3 & 2 / 3 & 0 & 0 \\ 1 / 3 & 2 / 3 & 0 & 0 \end{array}\right) \\ & =\left(\begin{array}{lll} 0.1 & 0.2 & 0.2333 \end{array}\right. \\ & 0.4667 \end{array}\right) .$ | M1 <br> A1 <br> M1 <br> A1 <br> 4 | Approximating $\mathbf{P}^{n}$ when $n$ is large and even <br> Approximating $\mathbf{P}^{n}$ when $n$ is large and odd |
| (vi) | $\mathbf{Q}=\left(\begin{array}{cccc}0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.6 & 0 & 0.1\end{array}\right)$ | B1 |  |


| (vii) | $\mathbf{Q}^{n} \rightarrow\left(\begin{array}{llll} 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \end{array}\right)$ <br> Probabilities are $0.172,0.310,0.169,0.349$ | M1 <br> M1 <br> A2 <br> 4 | Considering $\mathbf{Q}^{n}$ for large $n$ OR at least two eqns for equilib probs <br> Probabilities from equal rows OR solving to obtain equilib probs <br> Give A1 for two correct |
| :---: | :---: | :---: | :---: |
| (viii) | $\begin{gathered} 0.3487 \times 0.1 \times 0.1 \\ =0.0035 \end{gathered}$ | $\begin{array}{\|ll\|} \hline \text { M1M1 } & \\ \text { A1 } & 3 \end{array}$ | Using 0.3487 and 0.1 |

## Mark Scheme 4758

 June 2007\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \lambda^{2}+4 \lambda+29=0 \\
& \lambda=-2 \pm 5 j \\
& \text { CF } y=\mathrm{e}^{-2 t}(A \cos 5 t+B \sin 5 t) \\
& \text { PI } y=a \cos t+b \sin t \\
& \dot{y}=-a \sin t+b \cos t, \ddot{y}=-a \cos t-b \sin t \\
& -a \cos t-b \sin t+4(-a \sin t+b \cos t) \\
& +29(a \cos t+b \sin t)=3 \cos t \\
& 4 b+28 a=3 \\
& -4 a+28 b=0 \\
& a=0.105 \\
& b=0.015 \\
& y=\mathrm{e}^{-2 t}(A \cos 5 t+B \sin 5 t)+0.105 \cos t+0.015 \sin t
\end{aligned}
$$ \& M1
M1
A1
F1
B1
M1
M1

M1
M1
A1

F1 \& | Auxiliary equation Solve for complex roots |
| :--- |
| CF for their roots (if complex, must be exp/trig form) |
| Correct form for PI |
| Differentiate twice |
| Substitute |
| Compare coefficients (both sin and cos) |
| Solve for two coefficients |
| Both |
| $\mathrm{GS}=\mathrm{PI}+\mathrm{CF}$ (with two arbitrary constants) | <br>

\hline (ii) \& | $\begin{aligned} & t=0, y=0 \Rightarrow 0=A+0.105 \\ & \Rightarrow A=-0.105 \\ & \dot{y}=-2 \mathrm{e}^{-2 t}(A \cos 5 t+B \sin 5 t) \\ & +\mathrm{e}^{-2 t}(-5 A \sin 5 t+5 B \cos 5 t)-0.105 \sin t+0.015 \cos t \\ & t=0, \dot{y}=0 \Rightarrow 0=-2 A+5 B+0.015 \\ & \Rightarrow B=-0.045 \\ & y=-\mathrm{e}^{-2 t}(0.105 \cos 5 t+0.045 \sin 5 t)+0.105 \cos t+0.015 \sin t \end{aligned}$ |
| :--- |
| For large $t, y \approx 0.105 \cos t+0.015 \sin t$ $\text { amplitude } \approx \sqrt{0.105^{2}+0.015^{2}} \approx 0.106$ | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { F1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Use condition on $y$ |
| :--- |
| Differentiate (product rule) |
| Use condition on $\dot{y}$ |
| cao |
| Ignore decaying terms |
| Calculate amplitude from solution of |
| this form |
| cao | <br>

\hline (iii) \& $$
\begin{aligned}
& y(10 \pi) \approx 0.105 \\
& \dot{y}(10 \pi) \approx 0.015
\end{aligned}
$$ \& B1

B1 \& Their $a$ from PI, provided GS of correct form Their $b$ from PI, provided GS of correct form <br>

\hline (iv) \& | $y=\mathrm{e}^{-2 t}(C \cos 5 t+D \sin 5 t)$ |
| :--- |
| oscillations with decaying amplitude (or tends to zero) | \& F1

B1

B1 \& | Correct or follows previous CF |
| :--- |
| Must not use same arbitrary constants as before |
| Must indicate that $y$ approaches zero, not that $y \approx 0$ for $t>10 \pi$ | <br>

\hline
\end{tabular}




| 4(i) | $\begin{aligned} & \ddot{x}=-5 \dot{x}+4 \dot{y}-2 \mathrm{e}^{-2 t} \\ & =-5 \dot{x}+4\left(-9 x+7 y+3 \mathrm{e}^{-2 t}\right)-2 \mathrm{e}^{-2 t} \\ & =-5 \dot{x}-36 x+\frac{28}{4}\left(\dot{x}+5 x-\mathrm{e}^{-2 t}\right)+10 \mathrm{e}^{-2 t} \\ & \ddot{x}-2 \dot{x}+x=3 \mathrm{e}^{-2 t} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$ | Differentiate <br> Substitute for $\dot{y}$ <br> $y$ in terms of $x, \dot{x}$ <br> Substitute for $y$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\lambda^{2}-2 \lambda+1=0$ | M1 | Auxiliary equation |
|  | $\lambda=1$ (repeated) | A1 |  |
|  | CF $x=(A+B t) \mathrm{e}^{t}$ | F1 | CF for their roots |
|  | PI $x=a \mathrm{e}^{-2 t}$ | B1 | Correct form for PI |
|  | $\dot{x}=-2 a \mathrm{e}^{-2 t}, \ddot{x}=4 a \mathrm{e}^{-2 t}$ | M1 | Differentiate twice |
|  | $4 a \mathrm{e}^{-2 t}-2\left(-2 \mathrm{e}^{-2 t}\right)+a \mathrm{e}^{-2 t}=3 \mathrm{e}^{-2 t}$ | M1 | Substitute and compare |
|  | $a=\frac{1}{3}$ | A1 |  |
|  | GS $x=\frac{1}{3} \mathrm{e}^{-2 t}+(A+B t) \mathrm{e}^{t}$ | F1 | $\mathrm{GS}=\mathrm{PI}+\mathrm{CF}$ (with two arbitrary constants) |
| (iii) | $y=\frac{1}{4}\left(\dot{x}+5 x-\mathrm{e}^{-2 t}\right)$ | M1 | $y$ in terms of $x, \dot{x}$ |
|  | $=\frac{1}{4}\left(-\frac{2}{3} \mathrm{e}^{-2 t}+B \mathrm{e}^{t}+(A+B t) \mathrm{e}^{t}+\frac{5}{3} \mathrm{e}^{-2 t}+5(A+B t) \mathrm{e}^{t}-\mathrm{e}^{-2 t}\right)$ | M1 | Differentiate $x$ <br> $\dot{x}$ follows their $x$ (but must use product rule) |
|  | $y=\frac{1}{4} \mathrm{e}^{t}(6 A+B+6 B t)$ | A1 | cao |
| (iv) | $\frac{1}{3}+A=0$ |  |  |
|  | $\frac{1}{3}+A=0$ | M1 | Condition on $x$ |
|  | $\frac{1}{4}(6 A+B)=0$ | M1 | Condition on $y$ |
|  | $A=-\frac{1}{3}, B=2$ |  |  |
|  | $x=\frac{1}{3} \mathrm{e}^{-2 t}+\left(2 t-\frac{1}{3}\right) \mathrm{e}^{t}$ | A1 | Both solutions correct |
|  | $y=3 t \mathrm{e}^{t}$ |  |  |
|  | $t=0 \Rightarrow \dot{x}=1, \dot{y}=3$ | B1 | Both values correct |
|  | $\left.\left.\right\|^{x} \quad\right\|^{y} /$ | B1 | $x$ through origin and consistent with their solution for large $t$ (but not linear) |
|  | $\square$ | B1 | $y$ through origin and consistent with their solution for large $t$ (but not linear) |
|  |  | B1 | Gradient of both curves at origin consistent with their values of $\dot{x}, \dot{y}$ |

Mark Scheme 4761 June 2007

| Q1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $\rightarrow 40-P \cos 60=0$ $P=80$ | M1 <br> A1 <br> A1 | For any resolution in an equation involving $P$. <br> Allow for $P=40 \cos 60$ or $P=40 \cos 30$ or $P=40$ <br> $\sin 60$ <br> or $P=40 \sin 30$ <br> Correct equation <br> cao | 3 |
| (ii) | $\downarrow \quad Q+P \cos 30=120$ $Q=40(3-\sqrt{3})=50.7179 \ldots \text { so } 50.7(3 \mathrm{~s} .$ f.) | M1 <br> A1 | Resolve vert. All forces present. Allow $\sin \leftrightarrow \cos$ <br> No extra forces. Allow wrong signs. cao | 2 |
|  |  |  |  | 5 |


| Q2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | Straight lines connecting $(0,10),(10,30)$, <br> $(25,40)$ and $(45,40)$ | B1 <br> B1 <br> B1 | Axes with labels (words or letter). Scales indicated. <br> Accept no arrows. <br> Use of straight line segments and horiz section All correct with salient points clearly indicated | 3 |
| (ii) | $\begin{aligned} & 0.5(10+30) \times 10+0.5(30+40) \times 15+40 \times 20 \\ & =200+525+800=1525 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Attempt at area(s) or use of appropriate $u$ vast Evidence of attempt to find whole area cao | 3 |
| (iii) | $\begin{gathered} 0.5 \times 40 \times T=1700-1525 \\ \text { so } 20 T=175 \text { and } T=8.75 \end{gathered}$ | $\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$ | Equating triangle area to 1700 - their (ii) ( 1700 - their (ii))/20. Do not award for - ve answer. | 2 |
|  |  |  |  | 8 |


| Q3 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| (i) | String light and pulley smooth | E1 | Accept pulley smooth alone |  |
| (ii) | $5 g(49) \mathrm{N}$ thrust | M1 <br> B1 <br> A1 | Three forces in equilibrium. Allow sign errors. <br> for $15 g(147) ~ N u s e d ~ a s ~ a ~ t e n s i o n ~$ <br> $5 g(49) \mathrm{N}$ thrust. Accept $\pm 5$ (49). Ignore diagram. <br> [Award SC2 for $\pm 5 g(49) \mathrm{N}$ without 'thrust' and <br> SC3 if it is] |  |
|  |  |  |  | 3 |


| Q4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $\begin{aligned} & P-800=20000 \times 0.2 \\ & P=4800 \end{aligned}$ | M1 <br> A1 <br> A1 | N2L. Allow $F=m g a$. Allow wrong or zero resistance. <br> No extra forces. Allow sign errors. If done as 1 equn need $m=20000$. If A and B analysed separately, must have 2 equns with ' $T$ '. <br> N2L correct. | 3 |
| (ii) | New accn $4800-2800=20000 a$ $a=0.1$ | M1 <br> A1 | $F=m a$. Finding new accn. No extra forces. Allow 500 N but not 300 N omitted. Allow sign errors. <br> FT their $P$ | 2 |
| (iii) | $\begin{aligned} & T-2500=10000 \times 0.1 \\ & T=3500 \text { so } 3500 \mathrm{~N} \end{aligned}$ | M1 <br> A1 | N2L with new $a$. Mass 10000. All forces present for A or B except allow 500 N omitted on A. No extra forces cao | 2 |
|  |  |  |  | 7 |


| Q5 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Take $F+$ ve up the plane $F+40 \cos 35=100 \sin 35$ $F=24.5915 \ldots \text { so } 24.6 \mathrm{~N}(3 \text { s. f. })$ <br> up the plane | M1 <br> B1 <br> A1 <br> A1 | Resolve // plane (or horiz or vert). All forces present. <br> At least one resolved. Allow $\sin \leftrightarrow \cos$ and sign errors. Allow 100 g used. <br> Either $\pm 40 \cos 35$ or $\pm 100 \sin 35$ or equivalent seen Accept $\pm 24.5915 \ldots$ or $\pm 90.1237 \ldots$ even if inconsistent or wrong signs used. 24.6 N up the plane (specified or from diagram) or equiv all obtained from consistent and correct working. | 4 |
|  |  |  |  | 4 |


| Q6 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| (i) | $(-\mathbf{i}+16 \mathbf{j}+72 \mathbf{k})+(-80 \mathbf{k})=8 \mathbf{a}$ <br> $\mathbf{a}=\left(-\frac{1}{8} \mathbf{i}+2 \mathbf{j}-\mathbf{k}\right) \mathrm{m} \mathrm{s}^{-2}$ | M1 | E1 | Use of N2L. All forces present. <br> Need at least the $\mathbf{k}$ term clearly derived |
| (ii) | $\mathbf{r}=4(\mathbf{i}-4 \mathbf{j}+3 \mathbf{k})+0.5 \times 16\left(-\frac{1}{8} \mathbf{i}+2 \mathbf{j}-\mathbf{k}\right)$ | M1 | Use of appropriate uvast or integration (twice) <br> A1 <br> Correct substitution (or limits if integrated) |  |
| (iii) | $\sqrt{3^{2}+4^{2}}=5$ so 5 m | B1 | FT their (ii) even if it not a displacement. Allow <br> surd form |  |
| (iv) |  | M1 | Accept arctan $\frac{3}{4}$. FT their (ii) even if not a <br> displacement. Condone sign errors. <br> (May use arcsin4/5 or equivalent. FT their (ii) <br> and (iii) even if not displacement. Condone sign <br> errors) <br> cao |  |


| Q7 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $8 \mathrm{~m} \mathrm{~s}^{-1}$ (in the negative direction) | B1 | Allow $\pm$ and no direction indicated | 1 |
| (ii) | $\begin{aligned} & (t+2)(t-4)=0 \\ & \text { so } t=-2 \text { or } 4 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Equating $v$ to zero and solving or subst <br> If subst used then both must be clearly shown | 2 |
| (iii) | $a=2 t-2$ $\begin{aligned} & a=0 \text { when } t=1 \\ & v(1)=1-2-8=-9 \end{aligned}$ <br> so $9 \mathrm{~m} \mathrm{~s}^{-1}$ in the negative direction $(1,-9)$ | M1 <br> A1 <br> F1 <br> A1 <br> B1 | Differentiating <br> Correct <br> Accept -9 but not 9 without comment FT | 5 |
| (iv) | $\begin{aligned} & \int_{1}^{4}\left(t^{2}-2 t-8\right) \mathrm{d} x \\ & =\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{1}^{4} \\ & =\left(\frac{64}{3}-16-32\right)-\left(\frac{1}{3}-1-8\right) \\ & =-18 \end{aligned}$ <br> distance is 18 m | M1 <br> A1 <br> M1 <br> A1 <br> A1 | Attempt at integration. Ignore limits. <br> Correct integration. Ignore limits. <br> Attempt to sub correct limits and subtract <br> Limits correctly evaluated. Award if -18 seen <br> but no need to evaluate <br> Award even if -18 not seen. Do not award for -18. <br> cao | 5 |
| (v) | $2 \times 18=36 \mathrm{~m}$ | F1 | Award for $2 \times$ their (iv). | 1 |
| (vi) | $\begin{aligned} & \int_{4}^{5}\left(t^{2}-2 t-8\right) \mathrm{d} x=\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{4}^{5} \\ & =\left(\frac{125}{3}-25-40\right)-\left(-\frac{80}{3}\right)=3 \frac{1}{3} \\ & \text { so } 3 \frac{1}{3}+18=21 \frac{1}{3} \mathrm{~m} \end{aligned}$ | M1 <br> A1 <br> A1 | $\int_{4}^{5}$ attempted or, otherwise, complete method seen. <br> Correct substitution <br> Award for $3 \frac{1}{3}+$ their (positive) (iv) | 3 |
|  |  |  |  | 17 |

\begin{tabular}{|c|c|c|c|c|}
\hline Q8 \& \& \& \& \\
\hline (i) \& \[
\begin{aligned}
\& y=25 \sin \theta t+0.5 \times(-9.8) t^{2} \\
\& =7 t-4.9 t^{2} \\
\& x=25 \cos \theta t=25 \times 0.96 t=24 t
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
E1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Use of \(s=u t+1 / 2 a t^{2}\).Accept \(\sin , \cos , 0.96,0.28\), \(\pm 9.8, \pm 10, u=25\) and derivation of -4.9 not clear. \\
Shown including deriv of -4.9. Accept
\[
25 \sin \theta t=7 t \mathrm{WW}
\] \\
Accept \(25 \times 0.96 t\) or \(25 \cos \theta t\) seen WW
\end{tabular} \& 3 \\
\hline (ii) \& \[
\begin{aligned}
\& 0=7^{2}-19.6 \mathrm{~s} \\
\& s=2.5 \text { so } 2.5 \mathrm{~m}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Accept sequence of \(u\) vast. Accept \(u=24\) but not 25 . Allow \(u \leftrightarrow v\) and \(\pm 9.8\) and \(\pm 10\) + ve answer obtained by correct manipulation. \& 2 \\
\hline (iii) \& Need \(7 t-4.9 t^{2}=1.25\) so \(4.9 t^{2}-7 t+1.25=0\)
\[
\begin{aligned}
\& t=0.209209 \ldots \text { and } 1.219361 \ldots \\
\& \text { need } 24 \times(1.219 \ldots-0.209209 \ldots) \\
\& =24 \times 1.01 \ldots \text { so } 24.2 \mathrm{~m}(3 \text { s.f. })
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Equate \(y\) to their (ii)/2 or equivalent. \\
Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula). \\
Both. cao. [Award M1 A1 for two correct roots WW] \\
FT their roots (only if both positive)
\end{tabular} \& 4 \\
\hline \begin{tabular}{l}
(iv) \\
(A) \\
(B) \\
(C)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \dot{y}=7-9.8 t \\
\& \dot{y}(1.25)=7-9.8 \times 1.25=-5.25 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
\] \\
Falling as velocity is negative \\
Speed is \(\sqrt{24^{2}+(-5.25)^{2}}\)
\[
=24.5675 \ldots \text { so } 24.6 \mathrm{~m} \mathrm{~s}^{-1} \text { (3 s. f.) }
\]
\end{tabular} \& M1
A1
E1

M1

A1 \& | Attempt at $\dot{y}$. Accept sign errors and $u=24$ but not 25 |
| :--- |
| Reason must be clear. FT their $\dot{y}$ even if not a velocity Could use an argument involving time. Use of Pythag and 24 or 7 with their $\dot{y}$ cao | \& 5 <br>

\hline
\end{tabular}

| (v) | $\begin{aligned} & y=7 t-4.9 t^{2}, x=24 t \\ & \text { so } y=\frac{7 x}{24}-4.9\left(\frac{x}{24}\right)^{2} \\ & y=\frac{7 x}{24}-4.9 \times \frac{x^{2}}{576}=\frac{0.7 x}{576}(240-7 x) \end{aligned}$ <br> either <br> Need $y=0$ <br> so $x=0$ or $\frac{240}{7}$ so $\frac{240}{7} \mathrm{~m}$ <br> or | M1 <br> A1 <br> E1 <br> M1 <br> A1 <br> B1 <br> B1 | Elimination of $t$ <br> Elimination correct. Condone wrong notation with interpretation correct for the problem. <br> If not wrong accept as long as $24^{2}=576$ seen. <br> Condone wrong notation with interpretation correct for the problem. <br> Accept $x=0$ not mentioned. Condone $0 \leq X \leq \frac{240}{7}$. <br> Time of flight $10 / 7 \mathrm{~s}$ <br> Range $240 / 7 \mathrm{~m}$. Condone $0 \leq X \leq \frac{240}{7}$. |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 19 |

# Mark Scheme 4762 

 June 2007| Q 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (a) <br> (i) | Impulse has magnitude $2 \times 9=18 \mathrm{~N} \mathrm{~s}$ speed is $\frac{18}{6}=3 \mathrm{~m} \mathrm{~s}^{-1}$. | $\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$ |  | 2 |
| (ii) | $\begin{aligned} & \text { PCLM } \rightarrow \\ & 3 \times 6-1 \times 2=8 v \\ & v=2 \text { so } 2 \mathrm{~m} \mathrm{~s}^{-1} \text { in orig direction of } \mathrm{A} \end{aligned}$ | $\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { E1 } \end{array}$ | Use of PCLM + combined mass RHS All correct Must justify direction (diag etc) | 3 |
| (iii) | $\rightarrow 2 \times 2-2 \times-1=6 \mathrm{Ns}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Attempted use of $m \mathbf{v}-m \mathbf{u}$ for 6 Ns dir specified (accept diag) | 2 |
| (iv) <br> (A) |  | B1 | Accept masses not shown | 1 |
| (B) | $\begin{aligned} & \text { PCLM } \rightarrow \\ & 2 \times 8+10 \times 1.8=8 v+10 \times 1.9 \\ & v=1.875 \end{aligned}$ | $\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \end{array}$ | PCLM. All terms present Allow sign errors only | 3 |
| (C) | $\begin{aligned} & \text { NEL } \frac{1.9-1.875}{1.8-2}=-e \\ & \text { so } e=0.125 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { F1 } \end{aligned}$ | Use of NEL with their $v$ <br> Any form. FT their $v$ <br> FT their $v$ (only for $0<e \leq 1$ ) | 3 |
| (b) | Using $v^{2}=u^{2}+2 a s$ $v=\sqrt{2 \times 10 \times 9.8}=14$ <br> rebounds at $14 \times \frac{4}{7}$ $=8 \mathrm{~m} \mathrm{~s}^{-1}$ <br> No change to the horizontal component Since both horiz and vert components are $8 \mathrm{~m} \mathrm{~s}^{-1}$ the angle is $45^{\circ}$ | B1 <br> M1 <br> F1 <br> B1 <br> A1 | Allow $\pm 14$ <br> Using their vertical component <br> FT from their 14. Allow $\pm$ <br> Need not be explicitly stated <br> cao | 5 |
|  |  | 19 |  |  |


| Q 2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $\begin{aligned} & \theta=\frac{\pi}{2} \\ & \text { gives } \mathrm{CG}=\frac{8 \sin \frac{\pi}{2}}{\frac{\pi}{2}}=\frac{16}{\pi} \\ & \left(-\frac{16}{\pi}, 8\right) \text { justified } \end{aligned}$ | B1 <br> E1 <br> E1 |  | 3 |
| (ii) | $(8 \pi+72)\binom{\bar{x}}{\bar{y}}=8 \pi\binom{-\frac{16}{\pi}}{8}+72\binom{36}{0}$ $\binom{\bar{x}}{\bar{y}}=\binom{25.3673 \ldots}{2.06997 \ldots}=\binom{25.37}{2.07}(4 \text { s. f. })$ | M1 <br> B1 <br> A1 <br> A1 <br> E1 <br> E1 | Method for c.m. <br> Correct mass of 8 . or equivalent <br> $1{ }^{\text {st }}$ RHS term correct <br> $2^{\text {nd }}$ RHS term correct <br> [If separate cpts award the A1s for $x$ - and $y$-cpts correct on RHS] | 6 |
| (iii) |  | B1 <br> M1 <br> M1 <br> A1 <br> A1 | General position and angle (lengths need not be shown) <br> Angle or complement attempted. arctan or equivalent. <br> Attempt to get 16-2.0699... <br> Obtaining 13.93... cao <br> Accept use of $2.0699 \ldots$ but not 16 . cao | 5 |
| (iv) | c. w. moments about A $12 \times 13.93-16 F=0$ <br> so $F=10.4475 \ldots$ | M1 <br> A1 <br> A1 | [FT use of 2.0699...] <br> Moments about any point, all forces present <br> (1.5525... if $2.0699 \ldots$ used) | 3 |
|  |  | 17 |  |  |


| Q 3 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | Moments c.w. about B $\begin{aligned} & 200 \times 0.6-0.8 R_{\mathrm{A}}=0 \\ & R_{\mathrm{A}}=150 \text { so } 150 \mathrm{~N} \end{aligned}$ <br> Resolve or moments $R_{\mathrm{B}}=50 \text { so } 50 \mathrm{~N}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { F1 } \end{aligned}$ | Accept about any point. Allow sign errors. | 4 |
| (ii) | Moments c.w. about D $\begin{aligned} & -0.8 R_{\mathrm{C}}+1.2 \times 200=0 \\ & R_{\mathrm{C}}=300 \uparrow \end{aligned}$ <br> Resolve or moments $R_{\mathrm{D}}=100 \downarrow$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{E} 1 \end{aligned}$ | Or equiv. Accept about any point. All terms present. No extra terms. Allow sign errors. Neglect direction <br> Or equiv. All terms present. No extra terms. Allow sign errors. <br> Neglect direction <br> Both directions clearly shown (on diag) | 5 |
| (iii) | Moments c.w. about P $0.4 \times 200 \cos \alpha-0.8 R_{\mathrm{Q}}=0$ $R_{\mathrm{Q}}=96 \text { so } 96 \mathrm{~N}$ <br> resolve perp to plank $R_{\mathrm{P}}=200 \cos \alpha+R_{\mathrm{Q}}$ $R_{\mathrm{P}}=288 \text { so } 288 \mathrm{~N}$ | M1 <br> A1 <br> A1 <br> M1 <br> A1 <br> A1 | Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct <br> [No direction required but no sign errors in working] <br> Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct [No direction required but no sign errors in working] | 6 |
| (iv) | Need one with greatest normal reaction So at P <br> Resolve parallel to the plank $\begin{aligned} & F=200 \sin \alpha \\ & \text { so } F=56 \end{aligned}$ $\begin{aligned} & \mu=\frac{F}{R} \\ & =\frac{56}{288}=\frac{7}{36}(=0.194(3 \text { s. f. })) \end{aligned}$ | B1 <br> B1 <br> M1 <br> A1 | FT their reactions <br> Must use their $F$ and $R$ <br> cao | 4 |
|  |  | 19 |  |  |


| Q 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | either $\begin{aligned} & 0.5 \times 20 \times 0.5^{2}+20 \times 9.8 \times 4 \\ & =786.5 \mathrm{~J} \end{aligned}$ <br> or $\begin{aligned} & a=1 / 32 \\ & T-20 g=20 \times 1 / 32 \\ & T=196.625 \end{aligned}$ <br> WD is $4 T=786.5$ so 786.5 J | M1 <br> B1 <br> B1 <br> A1 <br> B1 <br> M1 <br> A1 <br> A1 | KE or GPE terms <br> KE term <br> GPE term <br> cao <br> N2L. All terms present. <br> cao | 4 |
| (ii) | $20 \mathrm{~g} \times 0.5=10 \mathrm{~g}$ so 98 W | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$ | Use of $P=F v$ or $\Delta \mathrm{WD} / \Delta t$ All correct | 3 |
| (iii) | GPE lost is $35 \times 9.8 \times 3=1029 \mathrm{~J}$ <br> KE gained is $0.5 \times 35 \times\left(3^{2}-1^{2}\right)=140 \mathrm{~J}$ <br> so WE gives WD against friction is $1029-140=889 \mathrm{~J}$ | $\begin{array}{\|l} \mathrm{B} 1 \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ | $\Delta \mathrm{KE}$ <br> The 140 J need not be evaluated Use of WE equation cao | 5 |
| (iv) | $\begin{aligned} & \text { either } \\ & \begin{array}{l} 0.5 \times 35 \times 3^{2}+35 \times 9.8 \times 0.1 x=150 x \\ \text { or } \\ \text { or } \\ 35 g \times 0.36127 \ldots \text { so } 1.36 \mathrm{~m}(3 \mathrm{~S} . \text { F. }) \\ \\ a=-3.3057 \ldots \\ 0=9-2 a x \\ x=1.36127 \ldots \text { so } 1.36 \mathrm{~m}(3 \mathrm{~S} . \text { F. }) \end{array} \end{aligned}$ | $\begin{array}{\|l} \mathrm{M} 1 \\ \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~A} 1 \\ \text { A1 } \\ \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$ | WE equation. Allow 1 missing term. No extra terms. <br> One term correct (neglect sign) <br> Another term correct (neglect sign) <br> All correct except allow sign errors <br> cao <br> Use of N2L. Must have attempt at weight component. No extra terms. <br> Allow sign errors, otherwise correct cao <br> Use of appropriate uvast or sequence cao | 5 |
|  |  | 17 |  |  |

Mark Scheme 4763 June 2007

| 1(a)(i) | $\begin{aligned} & {[\text { Velocity }]=\mathrm{LT}^{-1}} \\ & {[\text { Acceleration }]=\mathrm{LT}^{-2}} \\ & {[\text { Force }]=\mathrm{MLT}^{-2}} \\ & {[\text { Density }]=\mathrm{ML}^{-3}} \\ & {[\text { Pressure }]=\mathrm{ML}^{-1} \mathrm{~T}^{-2}} \end{aligned}$ | B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> 5 | (Deduct 1 mark if answers given as $\mathrm{ms}^{-1}, \mathrm{~ms}^{-2}, \mathrm{kgms}^{-2}$ etc) |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & {[P]=\mathrm{ML}^{-1} \mathrm{~T}^{-2}} \\ & {\left[\frac{1}{2} \rho v^{2}\right]=\left(\mathrm{M} \mathrm{~L}^{-3}\right)\left(\mathrm{LT}^{-1}\right)^{2}} \\ & = \\ & =\mathrm{ML}^{-1} \mathrm{~T}^{-2} \\ & {[\rho g h]=} \\ & \left(\mathrm{ML}^{-3}\right)\left(\mathrm{LT}^{-2}\right)(\mathrm{L})=\mathrm{ML}^{-1} \mathrm{~T}^{-2} \end{aligned}$ <br> All 3 terms have the same dimensions | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$ | Finding dimensions of 2nd or 3rd term <br> Allow e.g. 'Equation is dimensionally consistent' following correct work |
| (b)(i) |  | M1 | For a 'cos' curve (starting at the highest point) <br> Approx correct values marked on both axes |
| (ii) | $\begin{gathered} \text { Period } \frac{2 \pi}{\omega}=3.49 \\ \omega=1.8 \\ h=1.9+0.3 \cos 1.8 t \end{gathered}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~F} 1 \end{aligned}$ $4$ | Accept $\frac{2 \pi}{3.49}$ <br> For $h=c+a \cos / \sin$ with either $c=\frac{1}{2}(1.6+2.2)$ or $a=\frac{1}{2}(2.2-1.6)$ |
| (iii) | When $h=1.7$, float is 0.2 m below centre Acceleration is $\omega^{2} x=1.8^{2} \times 0.2$ <br> $=0.648 \mathrm{~m} \mathrm{~s}^{-2}$ upwards | M1A1 <br> A1 cao | Award M1 if there is at most one error |
|  | $\begin{array}{rlr} \text { OR When } h=1.7, & \cos 1.8 t=-\frac{2}{3} & \\ & (1.8 t=2.30, t=1.28) \\ \text { Acceleration } \ddot{h}= & -0.3 \times 1.8^{2} \cos 1.8 t \quad \text { M1 } \\ = & -0.3 \times 1.8^{2} \times\left(-\frac{2}{3}\right) \quad \text { A1 } \\ = & 0.648 \mathrm{~m} \mathrm{~s}^{-2} \text { upwards A1 cao } \end{array}$ |  |  |


| 2 (i) | $R \cos 60=0.4 \times 9.8$ <br> Normal reaction is 7.84 N | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ $2$ | Resolving vertically (e.g. $R \sin 60=m g$ is M1A0 $R=m g \cos 60$ is M 0 ) |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & R \sin 60=0.4 \times \frac{v^{2}}{2.7 \sin 60} \\ & \text { Speed is } 6.3 \mathrm{~ms} \mathrm{~s}^{-1} \end{aligned}$ | M1 <br> M1 <br> A1 <br> A1 cao <br> 4 | Horizontal equation of motion Acceleration $\frac{v^{2}}{r}$ (M0 for $\frac{v^{2}}{2.7}$ ) |
|  | $\text { OR } \begin{gathered} \text { OR } \sin 60=0.4 \times(2.7 \sin 60) \omega^{2} \\ \omega=2.694 \\ v=(2.7 \sin 60) \omega \\ \text { Speed is } 6.3 \mathrm{~m} \mathrm{~s}^{-1} \end{gathered}$ |  | Horizontal equation of motion or $R=0.4 \times 2.7 \times \omega^{2}$ <br> For $v=r \omega \quad(\mathrm{M} 0$ for $v=2.7 \omega)$ |
| (iii) | By conservation of energy, $\begin{aligned} \frac{1}{2} \times 0.4 \times\left(9^{2}-v^{2}\right) & =0.4 \times 9.8 \times(2.7+2.7 \cos \theta) \\ 81-v^{2} & =52.92+52.92 \cos \theta \\ v^{2} & =28.08-52.92 \cos \theta \end{aligned}$ | M1 <br> A1 <br> A1 <br> 3 | Equation involving KE and PE <br> Any (reasonable) correct form e.g. $v^{2}=81-52.92(1+\cos \theta)$ |
| (iv) | $\begin{aligned} R+0.4 \times 9.8 \cos \theta & =0.4 \times \frac{v^{2}}{2.7} \\ R+3.92 \cos \theta & =\frac{0.4}{2.7}(28.08-52.92 \cos \theta) \\ R+3.92 \cos \theta & =4.16-7.84 \cos \theta \\ R & =4.16-11.76 \cos \theta \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> E1 <br> 5 | Radial equation with 3 terms <br> Substituting expression for $v^{2}$ <br> $S R$ If $\theta$ is taken to the downward vertical, maximum marks are: <br> M1A0A0 in (iii) <br> M1A1M1A1E0 in (iv) |
| (v) | Leaves surface when $R=0$ $\begin{aligned} & \cos \theta=\frac{4.16}{11.76} \\ & v^{2}=28.08-52.92 \times \frac{4.16}{11.76} \quad(=9.36) \end{aligned}$ <br> Speed is $3.06 \mathrm{~m} \mathrm{~s}^{-1}$ | M1 <br> A1 <br> M1 <br> A1 cao <br> 4 | Dependent on previous M1 or using $m g \cos \theta=\frac{m v^{2}}{r}$ |


| 3 (i) | $\begin{aligned} & \text { Tension is } 637 \times 0.1=63.7 \mathrm{~N} \\ & \text { Energy is } \frac{1}{2} \times 637 \times 0.1^{2} \\ &=3.185 \mathrm{~J} \end{aligned}$ | $\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & 3 \end{array}$ |  |
| :---: | :---: | :---: | :---: |
| (ii) | Let $\theta$ be angle between RA and vertical $\begin{gathered} \cos \theta=\frac{5}{13} \quad\left(\theta=67.4^{\circ}\right) \\ T \cos \theta=m g \\ 63.7 \times \frac{5}{13}=m \times 9.8 \end{gathered}$ <br> Mass of ring is 2.5 kg | $\left\|\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { E1 } & 4 \end{array}\right\|$ | Resolving vertically |
| (iii) | Loss of PE is $2.5 \times 9.8 \times(0.9-0.5)$ <br> EE at lowest point is $\frac{1}{2} \times 637 \times 0.3^{2} \quad(=28.665)$ <br> By conservation of energy, $\begin{aligned} 2.5 \times 9.8 \times 0.4+\frac{1}{2} \times 2.5 u^{2} & =\frac{1}{2} \times 637 \times 0.3^{2}-3.185 \\ 9.8+1.25 u^{2} & =25.48 \\ u^{2} & =12.544 \\ u & =3.54 \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> M1 <br> F1 <br> A1 cao | Considering PE or PE at start and finish Award M1 if not more than one error <br> Equation involving KE, PE and EE |
| (iv) | From lowest point to level of A, <br> Loss of EE is 28.665 <br> Gain in PE is $2.5 \times 9.8 \times 0.9=22.05$ <br> Since $28.665>22.05$, <br> Ring will rise above level of A | M1 <br> M1 <br> M1 <br> A1 cao <br> 4 | EE at 'start' and at level of A PE at 'start' and at level of A (For M2 it must be the same 'start') Comparing EE and PE (or equivalent, e.g. $\left.\frac{1}{2} m u^{2}+3.185=m g \times 0.5+\frac{1}{2} m v^{2}\right)$ Fully correct derivation |
|  |  |  | $S R$ If 637 is used as modulus, maximum marks are: <br> (i) B 0 M 1 A 0 <br> (ii) B1M1A1E0 <br> (iii) M1A1M1A1M1F1A0 <br> (iv) M1M1M1A0 |


| 4 (a) | $\begin{aligned} & \text { Area is } \int_{0}^{2} x^{3} \mathrm{~d} x=\left[\frac{1}{4} x^{4}\right]_{0}^{2}=4 \\ & \int x y \mathrm{~d} x=\int_{0}^{2} x^{4} \mathrm{~d} x \\ & =\left[\frac{1}{5} x^{5}\right]_{0}^{2}=6.4 \\ & \bar{x}=\frac{6.4}{4}=1.6 \\ & \begin{aligned} \int \frac{1}{2} y^{2} \mathrm{~d} x & =\int_{0}^{2} \frac{1}{2} x^{6} \mathrm{~d} x \\ & =\left[\frac{1}{14} x^{7}\right]_{0}^{2}=\frac{64}{7} \end{aligned} \\ & \bar{y}=\frac{\int \frac{1}{2} y^{2} \mathrm{~d} x}{\int y \mathrm{~d} x} \\ & =\frac{\frac{64}{7}}{4}=\frac{16}{7} \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 8 | Condone omission of $\frac{1}{2}$ <br> Accept 2.3 from correct working |
| :---: | :---: | :---: | :---: | :---: |
| (b)(i) |  | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$ | 6 | $\pi$ may be omitted throughout <br> For $\frac{5}{3}$ <br> For $\frac{9}{4}$ <br> Must be fully correct |
| (ii) | Height of solid is $h=2 \sqrt{3}$ $\begin{aligned} & T h=m g \times 0.35 \\ & F=T=0.101 m g, \quad R=m g \end{aligned}$ <br> Least coefficient of friction is $\frac{F}{R}=0.101$ | $\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { F1 } \\ \text { A1 } \end{array}$ |  | Taking moments <br> Must be fully correct (e.g. A0 if $m=\frac{5}{3} \pi$ is used) |

Mark Scheme 4764 June 2007

| $\text { 1(i) } \quad \begin{aligned} x & =\mathrm{PB} \\ x & =\sqrt{a^{2}+y^{2}} \\ & V=\frac{1}{2} k x^{2}-m g y \\ & =\frac{1}{2} k\left(a^{2}+y^{2}\right)-m g y \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | May be implied <br> EPE term <br> GPE term cao |
| :---: | :---: | :---: |
| $\text { (ii) } \begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} y}=k y-m g \\ & \text { equilibrium } \Rightarrow \frac{\mathrm{d} V}{\mathrm{~d} y}=0 \\ & \Rightarrow y=\frac{m g}{k} \\ & \frac{\mathrm{~d}^{2} V}{\mathrm{~d} y^{2}}=k>0 \\ & \Rightarrow \text { stable } \end{aligned}$ | M1 B1 A1 M1 E1 | Differentiate their $V$ <br> Seen or implied <br> cao <br> Consider sign of $V^{\prime \prime}$ (or $V^{\prime}$ either side) <br> Complete argument |
| $\text { (iii) } \begin{aligned} & R=T \sin P \hat{B} A=k \cdot P B \cdot \frac{a}{P B} \\ = & k a \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Use Hooke's law and resolve |
| 2(i) $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} t}(m v)=0 \Rightarrow m v \text { constant } \\ & \text { hence } m v=m_{0} u \\ & \frac{\mathrm{~d} m}{\mathrm{~d} t}=k \\ & \Rightarrow m=m_{0}+k t \\ & v=\frac{m_{0} u}{m}=\frac{m_{0} u}{m_{0}+k t} \\ & x=\int \frac{m_{0} u}{m_{0}+k t} \mathrm{~d} t \\ & =\frac{m_{0} u}{k} \ln \left(m_{0}+k t\right)+A \\ & x=0, t=0 \Rightarrow A=-\frac{m_{0} u}{k} \ln m_{0} \\ & x=\frac{m_{0} u}{k} \ln \left(\frac{m_{0}+k t}{m_{0}}\right) \end{aligned}$ | M1 <br> A1 <br> B1 <br> B1 <br> E1 <br> M1 <br> A1 <br> M1 <br> A1 | Or no external forces $\Rightarrow$ momentum conserved, or attempt using $\delta$ terms. $\frac{\mathrm{d} m}{\mathrm{~d} t}=k \text { seen }$ <br> $m_{0}+k t$ stated or clearly used as mass Complete argument (dependent on all previous marks and $m_{0}+k t$ derived, not just stated) <br> Integrate $v$ <br> cao <br> Use condition <br> cao |
| (ii) $\begin{aligned} & v=\frac{1}{2} u \Rightarrow m_{0}+k t=2 m_{0} \\ & \Rightarrow x=\frac{m_{0} u}{k} \ln \left(\frac{2 m_{0}}{m_{0}}\right) \\ & \Rightarrow x=\frac{m_{0} u}{k} \ln 2 \end{aligned}$ | M1 <br> M1 <br> F1 | Attempt to calculate value of $m$ or $t$ <br> Substitute their $m$ or $t$ into $x$ $t=\frac{m_{0}}{k}$ or $m=2 m_{0}$ in their $x$ |



| $\begin{aligned} & 2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=2-8 v^{2} \\ & \int \frac{v}{1-4 v^{2}} \mathrm{~d} v=\int \mathrm{d} x \\ & -\frac{1}{8} \ln \left\|1-4 v^{2}\right\|=x+c_{1} \\ & x=0, v=0 \Rightarrow c_{1}=0 \\ & 1-4 v^{2}=\mathrm{e}^{-8 x} \\ & v^{2}=\frac{1}{4}\left(1-\mathrm{e}^{-8 x}\right) \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> M1 <br> M1 <br> E1 | N2L <br> Separate <br> LHS <br> Use condition <br> Rearrange <br> Complete argument |
| :---: | :---: | :---: |
| $\text { (ii) } \begin{aligned} & F=2-8 v^{2}=2-2\left(1-\mathrm{e}^{-8 x}\right) \\ &= 2 \mathrm{e}^{-8 x} \\ & \text { Work done }=\int_{0}^{2} F \mathrm{~d} x \\ &= \int_{0}^{2} 2 \mathrm{e}^{-8 x} \mathrm{~d} x \\ &=\left[-\frac{1}{4} \mathrm{e}^{-8 x}\right]_{0}^{2} \\ &= \frac{1}{4}\left(1-\mathrm{e}^{-16}\right) \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> M1 <br> A1 | Substitute given $v^{2}$ into $F$ cao <br> Set up integral of $F$ <br> cao <br> Integrate <br> Accept $\frac{1}{4}$ or 0.25 from correct working |
| (iii) $\begin{aligned} & 2 \frac{\mathrm{~d} v}{\mathrm{~d} t}=2-8 v^{2} \\ & \frac{1}{4} \int \frac{1}{\frac{1}{4}-v^{2}} \mathrm{~d} v=\int \mathrm{d} t \\ & \frac{1}{4} \ln \left\|\frac{\frac{1}{2}+v}{\frac{1}{2}-v}\right\|=t+c_{2} \\ & t=0, v=0 \Rightarrow c_{2}=0 \\ & \frac{1}{2}+v \\ & \frac{1}{2}-v \\ & 1+2 v=\mathrm{e}^{4 t} \\ & 2 v\left(1+\mathrm{e}^{4 t}(1-2 v)=\mathrm{e}^{4 t}-1\right. \\ & v=\frac{1}{2}\left(\frac{\mathrm{e}^{4 t}-1}{\mathrm{e}^{4 t}+1}\right)=\frac{1}{2}\left(\frac{1-\mathrm{e}^{-4 t}}{1+\mathrm{e}^{-4 t}}\right) \end{aligned}$ | M1 M1 A1 M1 M1 M1 E1 | N2L <br> Separate <br> LHS <br> Use condition <br> Rearrange (remove log) <br> Rearrange ( $v$ in terms of $t$ ) <br> Complete argument |
| $\text { (v) } \quad \begin{aligned} & t=1 \Rightarrow v=0.4820 \\ & \\ & \\ & \\ & \text { Impulse }=m \Rightarrow v=0.4997 \\ & \\ & \\ & =0.0353 \end{aligned}$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Use impulse-momentum equation Accept anything in interval [0.035, 0.036] |

Mark Scheme 4766 June 2007


| Q5 (i) | $11^{\text {th }}$ value is $4,12^{\text {th }}$ value is 4 so median is 4 <br> Interquartile range $=5-2=3$ | B1 <br> M1 for either quartile <br> A1 CAO | 3 |
| :--- | :--- | :--- | :--- |
| (ii) | No, not valid <br> any two valid reasons such as : <br> the sample is only for two years, which may not be <br> representative <br> the data only refer to the local area, not the whole of <br> Britain <br> even if decreasing it may have nothing to do with global <br> warming <br> more days with rain does not imply more total rainfall <br> a five year timescale may not be enough to show a long <br> term trend | E1 E1 | B1 |


|  | Section B |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$ |  | G1 probabilities of result <br> G1 probabilities of disease <br> G1 probabilities of clear <br> G1 labels | 4 |
| (ii) | $\begin{gathered} \mathrm{P}(\text { negative and clear }) \quad=0.91 \times 0.99 \\ =0.9009 \end{gathered}$ | M1 for their $0.91 \times 0.99$ <br> A1 CAO | 2 |
| (iii) | $\begin{aligned} \mathrm{P}(\text { has disease }) & =0.03 \times 0.95+0.06 \times 0.10+0.91 \times 0.01 \\ & =0.0285+0.006+0.0091 \\ & =0.0436 \end{aligned}$ | M1 three products M1dep sum of three products A1 FT their tree | 3 |
| (iv) | P (negative \| has disease) $=\frac{\mathrm{P}(\text { negative and } \text { has disease })}{\mathrm{P}(\text { has disease })}=\frac{0.0091}{0.0436}=0.2087$ | M1 for their $0.01 \times 0.91$ or 0.0091 on its own or as numerator M1 indep for their 0.0436 as denominator A1 FT their tree | 3 |
| (v) | Thus the test result is not very reliable. <br> A relatively large proportion of people who have the disease will test negative. | E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT | 2 |
| (vi) | $\begin{aligned} & \mathrm{P}(\text { negative or doubtful and declared clear) } \\ & \quad=0.91+0.06 \times 0.10 \times 0.02+0.06 \times 0.90 \times 1 \\ & \quad=0.91+0.00012+0.054=0.96412 \end{aligned}$ | M1 for their $0.91+$ M1 for either triplet M1 for second triplet A1 CAO | 4 |
|  |  | TOTAL | 18 |


| $\begin{aligned} & \hline \text { Q8 } \\ & \text { (i) } \end{aligned}$ | $\begin{aligned} X \sim \mathrm{~B}(17,0.2) & \\ \mathrm{P}(X \geq 4) & =1-\mathrm{P}(X \leq 3) \\ & =1-0.5489=0.4511 \end{aligned}$ | B1 for 0.5489 <br> M1 for 1 - their 0.5489 <br> A1 CAO | 3 |
| :---: | :---: | :---: | :---: |
| (ii) | $\mathrm{E}(X)=n p=17 \times 0.2=3.4$ | M1 for product A1 CAO | 2 |
| (iii) | $\begin{aligned} & \mathrm{P}(X=2)=0.3096-0.1182=0.1914 \\ & \mathrm{P}(X=3)=0.5489-0.3096=0.2393 \\ & \mathrm{P}(X=4)=0.7582-0.5489=0.2093 \end{aligned}$ <br> So 3 applicants is most likely | B1 for 0.2393 <br> B1 for 0.2093 <br> A1 CAO dep on both B1s | 3 |
| (iv) | (A) Let $p=$ probability of a randomly selected maths graduate applicant being successful (for population) <br> $\mathrm{H}_{0}: p=0.2$ <br> $\mathrm{H}_{1}: p>0.2$ <br> (B) $\quad \mathrm{H}_{1}$ has this form as the suggestion is that mathematics graduates are more likely to be successful. | B1 for definition of $p$ in context <br> B1 for $\mathrm{H}_{0}$ <br> B1 for $\mathrm{H}_{1}$ <br> E1 | 4 |
| (v) | $\begin{aligned} & \text { Let } X \sim \mathrm{~B}(17,0.2) \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.8943=0.1057>5 \% \\ & \mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.9623=0.0377<5 \% \end{aligned}$ <br> So critical region is $\{7,8,9,10,11,12,13,14,15,16,17\}$ | B1 for 0.1057 <br> B1 for 0.0377 <br> M1 for at least one comparison with $5 \%$ A1 CAO for critical region dep on M1 and at least one B1 | 4 |
| (vi) | Because $\mathrm{P}(X \geq 6)=0.1057>10 \%$ <br> Either: comment that 6 is still outside the critical region Or comparison $\mathrm{P}(X \geq 7)=0.0377<10 \%$ | $\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$ | 2 |
|  |  | TOTAL | 18 |

Mark Scheme 4767 June 2007

## Question 1

| (i) | $\begin{aligned} & X \sim \mathrm{~N}\left(11,3^{2}\right) \\ & \begin{aligned} \mathrm{P}(X<10) & =\mathrm{P}\left(Z<\frac{10-11}{3}\right) \\ = & \mathrm{P}(Z<-0.333) \\ = & \Phi(-0.333)=1-\Phi(0.333) \\ = & 1-0.6304=0.3696 \end{aligned} \end{aligned}$ | M1 for standardizing <br> M1 for use of tables with their $z$-value M1 dep for correct tail A1CAO (must include use of differences) | 4 |
| :---: | :---: | :---: | :---: |
| (ii) | P (3 of 8 less than ten) $=\binom{8}{3} \times 0.3696^{3} \times 0.6304^{5}=0.2815$ | M1 for coefficient <br> M1 for $0.3696^{3} \times 0.6304^{5}$ <br> A1 FT (min 2sf) | 3 |
| (iii) | $\begin{aligned} & \mu=n p=100 \times 0.3696=36.96 \\ & \sigma^{2}=n p q=100 \times 0.3696 \times 0.6304=23.30 \\ & Y \sim \mathrm{~N}(36.96,23.30) \\ & \mathrm{P}(Y \geq 50)=\mathrm{P}\left(Z>\frac{49.5-36.96}{\sqrt{23.30}}\right) \\ & =\mathrm{P}(Z>2.598)=1-\Phi(2.598)=1-0.9953 \\ & =0.0047 \end{aligned}$ | M1 for Normal approximation with correct (FT) parameters <br> B1 for continuity corr. <br> M1 for standardizing and using correct tail <br> A1 CAO (FT 50.5 or omitted CC) | 4 |
| (iv) | $\mathrm{H}_{0}: \mu=11 ; \quad \mathrm{H}_{1}: \mu>11$ <br> Where $\mu$ denotes the mean time taken by the new hairdresser | B1 for $\mathrm{H}_{0}$, as seen. B1 for $\mathrm{H}_{1}$, as seen. B1 for definition of $\mu$ | 3 |
| (v) | $\begin{aligned} \text { Test statistic } & =\frac{12.34-11}{3 / \sqrt{25}}=\frac{1.34}{0.6} \\ & =2.23 \end{aligned}$ <br> $5 \%$ level 1 tailed critical value of $\mathrm{z}=1.645$ <br> $2.23>1.645$, so significant. <br> There is sufficient evidence to reject $\mathrm{H}_{0}$ <br> It is reasonable to conclude that the new hairdresser does take longer on average than other staff. | M1 must include $\sqrt{ } 25$ <br> A1 (FT their $\mu$ ) <br> B1 for 1.645 <br> M1 for sensible comparison leading to a conclusion <br> A1 for conclusion in words in context ( FT their $\mu$ ) | 5 |
|  |  |  | 19 |

## Question 2



## Question 3

| (i) | (A) $\mathrm{P}(X=1)=0.1712-0.0408=0.1304$ <br> $O R \quad=\mathrm{e}^{-3.2} \frac{3.2^{1}}{1!}=0.1304$ $\text { (B) } \begin{aligned} \mathrm{P}(X \geq 6) & =1-\mathrm{P}(X \leq 5)=1-0.8946 \\ & =0.1054 \end{aligned}$ | M1 for tables <br> A1 (2 s.f. WWW) <br> M1 <br> A1 | 4 |
| :---: | :---: | :---: | :---: |
| (ii) | (A) $\lambda=3.2 \div 5=0.64$ $\mathrm{P}(X=1)=\mathrm{e}^{-0.64} \frac{0.64^{1}}{1!}=0.3375$ <br> (B) P (exactly one in each of 5 mins) $=0.3375^{5}=0.004379$ | B1 for mean (SOI) <br> M1 for probability <br> A1 <br> B1 (FT to at least 2 s.f.) | 4 |
| (iii) | Mean no. of calls in 1 hour $=12 \times 3.2=38.4$ <br> Using Normal approx. to the Poisson, $\begin{aligned} & X \sim \mathrm{~N}(38.4,38.4) \\ & \quad \mathrm{P}(X \leq 45.5)=\mathrm{P}\left(Z \leq \frac{45.5-38.4}{\sqrt{38.4}}\right) \\ & =\mathrm{P}(Z \leq 1.146)=\Phi(1.146)=0.874 \text { (3 s.f. }) \end{aligned}$ | B1 for Normal approx. with correct parameters (SOI) <br> B1 for continuity corr. <br> M1 for probability using correct tail <br> A1 CAO, (but FT 44.5 or omitted CC) | 4 |
| (iv) | (A) Suitable arguments for/against each assumption: <br> (B) Suitable arguments for/against each assumption: | E1, E1 <br> E1, E1 | 4 |
|  |  |  | 16 |

## Question 4



Mark Scheme 4768 June 2007

| Q1 | $\mathrm{f}(t)=k t^{3}(2-t) \quad 0<t \leq 2$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $\begin{aligned} & \int_{0}^{2} k t^{3}(2-t) \mathrm{d} t=1 \\ & \therefore\left[k\left(\frac{2 t^{4}}{4}-\frac{t^{5}}{5}\right)\right]_{0}^{2}=1 \\ & \therefore k\left(8-\frac{32}{5}\right)-0=1 \\ & \therefore k \times \frac{8}{5}=1 \quad \therefore k=\frac{5}{8} \end{aligned}$ | M1 <br> E1 | Integral of $\mathrm{f}(t)$, including limits (possibly implied later), equated to 1. <br> Convincingly shown. Beware printed answer. | 2 |
| (ii) | $\begin{aligned} & \frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{5}{8}\left(6 t^{2}-4 t^{3}\right)=0 \\ & \therefore 6 t^{2}-4 t^{3}=0 \\ & \therefore 2 t^{2}(3-2 t)=0 \\ & \therefore t=(0 \text { or }) \frac{3}{2} \end{aligned}$ | M1 <br> A1 | Differentiate and set equal to zero. <br> c.a.o. | 2 |
| (iii) | $\begin{aligned} \mathrm{E}(T) & =\int_{0}^{2} \frac{5}{8} 4^{4}(2-t) \mathrm{d} t \\ & =\left[\frac{5}{8}\left(\frac{2 t^{5}}{5}-\frac{t^{6}}{6}\right)\right]_{0}^{2}=\frac{5}{8} \times\left(\frac{64}{5}-\frac{64}{6}\right)=\frac{4}{3} \\ \mathrm{E}\left(T^{2}\right) & =\int_{0}^{2} \frac{5}{8} t^{5}(2-t) \mathrm{d} t \\ & =\left[\frac{5}{8}\left(\frac{2 t^{6}}{6}-\frac{t^{7}}{7}\right)\right]_{0}^{2}=\frac{5}{8} \times\left(\frac{128}{6}-\frac{128}{7}\right)=\frac{40}{21} \\ \operatorname{Var}(T) & =\frac{40}{21}-\left(\frac{4}{3}\right)^{2}=\frac{120-112}{63}=\frac{8}{63} \end{aligned}$ | M1 <br> A1 <br> M1 <br> M1 <br> A1 | Integral for $\mathrm{E}(T)$ including limits (which may appear later). <br> Integral for $\mathrm{E}\left(T^{2}\right)$ including limits (which may appear later). <br> Convincingly shown. Beware printed answer. | 5 |
| (iv) | $\bar{T} \sim \mathrm{~N}\left(\frac{4}{3}, \frac{8}{63 n}\right)$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Normal distribution. <br> Mean. ft c's $\mathrm{E}(T)$. <br> Correct variance. | 3 |


| (v) | $\begin{aligned} & n=100, \quad \bar{t}=\frac{145 \cdot 2}{100}=1 \cdot 452 \\ & s_{n-1}^{2}=\frac{223 \cdot 41-100 \times 1 \cdot 452^{2}}{99}=0 \cdot 12707 \end{aligned}$ <br> CI is given by $1.452 \pm$ $=1.452 \pm 0.0698=(1.382,1.522)$ <br> Since $\mathrm{E}(T)(=4 / 3)$ lies outside this interval it seems the model may not be appropriate. | B1 <br> M1 <br> B1 <br> M1 <br> A1 <br> E1 | Both mean and variance. <br> Accept sd $=0.3565$ <br> $\mathrm{ftc} \mathrm{s} \bar{t} \pm$. <br> ft c 's $s_{n 1}$. <br> c.a.o. Must be expressed as an interval. | 6 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 18 |


| Q2 | $\begin{aligned} & C a \sim \mathrm{~N}\left(60 \cdot 2,5 \cdot 2^{2}\right) \\ & C o \sim \mathrm{~N}(33 \cdot 9, \\ & \left.6 \cdot 3^{2}\right) \\ & L \sim \mathrm{~N}\left(52 \cdot 4,4 \cdot 9^{2}\right) \end{aligned}$ |  | When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only. |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | $\begin{aligned} \mathrm{P}(C o<40)=\mathrm{P}\left(Z<\frac{40-33 \cdot 9}{6 \cdot 3}\right. & =0.9683) \\ = & 0.8336 \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | For standardising. Award once, here or elsewhere. <br> c.a.o. | 3 |
| (ii) | Want $\mathrm{P}(L>C a)$ i.e. $\mathrm{P}(L-C a>0)$ $\begin{aligned} & L-C a \sim \mathrm{~N}(52 \cdot 4-60 \cdot 2=-7 \cdot 8, \\ & \left.4 \cdot 9^{2}+5 \cdot 2^{2}=51 \cdot 05\right) \\ & \begin{aligned} \mathrm{P}(\text { this }>0)=\mathrm{P}(Z & \left.>\frac{0-(-7 \cdot 8)}{\sqrt{51 \cdot 05}}=1.0917\right) \\ & =1-0.8625=0.1375 \end{aligned} \end{aligned}$ | M1 <br> B1 <br> B1 <br> A1 | Allow $C a-L$ provided subsequent work is consistent. <br> Mean. <br> Variance. Accept $s d=\sqrt{ } 51 \cdot 05=$ 7•1449... <br> c.a.o. | 4 |
| (iii) | $\begin{aligned} & \text { Want } \mathrm{P}\left(C a_{1}+C a_{2}+C a_{3}+C a_{4}>225\right) \\ & C a_{1}+\ldots \sim \mathrm{N}(60 \cdot 2+60 \cdot 2+60 \cdot 2+60 \cdot 2=240 \cdot 8, \\ & \left.5 \cdot 2^{2}+5 \cdot 2^{2}+5 \cdot 2^{2}+5 \cdot 2^{2}=108 \cdot 16\right) \\ & \mathrm{P}(\text { this }>225)=\mathrm{P}\left(Z>\frac{225-240 \cdot 8}{\sqrt{108 \cdot 16}}=-1 \cdot 519\right) \\ & =0.9356 \end{aligned}$ <br> Must assume that the weeks are independent of each other. | M1 <br> B1 <br> B1 <br> A1 <br> B1 | Mean. <br> Variance. Accept $\mathrm{sd}=\sqrt{ } 108 \cdot 16=10 \cdot 4$. <br> c.a.o. | 5 |
| (iv) | $\begin{aligned} & R \sim \mathrm{~N}(0 \cdot 05 \times 60 \cdot 2+0 \cdot 1 \times 33 \cdot 9+0 \cdot 2 \times 52 \cdot 4=16 \cdot 88, \\ & \left.0 \cdot 05^{2} \times 5 \cdot 2^{2}+0 \cdot 1^{2} \times 6 \cdot 3^{2}+0 \cdot 2^{2} \times 4 \cdot 9^{2}=1 \cdot 4249\right) \\ & \mathrm{P}(R>20)=\mathrm{P}\left(Z>\frac{20-16 \cdot 88}{\sqrt{1 \cdot 4249}}=2 \cdot 613\right) \\ & \quad=1-0 \cdot 9955=0 \cdot 0045 \end{aligned}$ | M1 <br> A1 <br> M1 <br> M1 <br> A1 <br> A1 | Mean. <br> For $0.05^{2}$ etc. <br> For $\times 5 \cdot 2^{2}$ etc. <br> Accept sd $=\sqrt{ } 1 \cdot 4249=1 \cdot 1937$. <br> c.a.o. | 6 |
|  |  |  |  | 18 |

\begin{tabular}{|c|c|c|c|c|}
\hline Q3 \& \& \& \& \\
\hline \begin{tabular}{l}
(a) \\
(i)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: \mu_{D}=0 \\
\& \mathrm{H}_{1}: \mu_{D}>0
\end{aligned}
\] \\
Where \(\mu_{D}\) is the (population) mean reduction in absenteeism. \\
Must assume Normality ... ... of differences.
\end{tabular} \& B1 \& \begin{tabular}{l}
Both. Accept alternatives e.g. \(\mu_{D}<0\) for \(\mathrm{H}_{1}\), or \(\mu_{A}-\mu_{B}\) etc provided adequately defined. \\
Allow absence of "population" if correct notation \(\mu\) is used, but do NOT allow " \(\bar{X}=\)..." or similar unless \(\bar{X}\) is clearly and explicitly stated to be a population mean. Hypotheses in words only must include "population".
\end{tabular} \& 4 \\
\hline (ii) \& \begin{tabular}{l}
Differences (reductions) (before - after) \\
\(1 \cdot 7,0 \cdot 7,0 \cdot 6,-1 \cdot 3,0 \cdot 1,-0 \cdot 9,0 \cdot 6,-0 \cdot 7,0 \cdot 4,2 \cdot 7\), 0.9
\[
\bar{x}=0.4364, s_{n 1}=1 \cdot 1518\left(s_{n 1}{ }^{2}=1.3265\right)
\] \\
Test statistic is \(\frac{0 \cdot 4364-0}{\left(\frac{1 \cdot 1518}{\sqrt{11}}\right)}\)
\[
=1 \cdot 256(56 \ldots)
\] \\
Refer to \(t_{10}\). \\
Upper \(5 \%\) point is 1.812 . \\
\(1 \cdot 256<1 \cdot 812, \therefore\) Result is not significant. Seems there has been no reduction in mean absenteeism.
\end{tabular} \& B1
M1

A1

M1
A1

E1 \& | Allow "after - before" if consistent with alternatives above. |
| :--- |
| Do not allow $s_{n}=1.098\left(s_{n}{ }^{2}=1.205\right)$. |
| Allow c's $\bar{x}$ and/or $s_{n 1}$. Allow alternative: $0 \pm(\mathrm{c}$ 's 1.812$) \times$ $\frac{1.1518}{\sqrt{11}}(=-0.6293,0.6293)$ for subsequent comparison with $\bar{x}$. (Or $\bar{x} \pm(\mathrm{c}$ 's 1.812$) \times \frac{1.1518}{\sqrt{11}}(=-$ |
| $0.1929,1 \cdot 0657$ ) for comparison with 0.$)$ |
| c.a.o. but ft from here in any case if wrong. |
| Use of $0-\bar{x}$ scores M1A0, but ft. |
| No ft from here if wrong. No ft from here if wrong. For alternative $\mathrm{H}_{1}$ expect -1.812 unless it is clear that absolute values are being used. |
| ft only c 's test statistic. |
| ft only c's test statistic. |
| Special case: ( $t_{11}$ and 1.796 ) can score 1 of these last 2 marks if either form of conclusion is given. | \& 7 <br>

\hline
\end{tabular}

| (b) | For "days lost after" $\bar{x}=4 \cdot 6182, s_{n 1}=1 \cdot 4851 \quad\left(s_{n 1}^{2}=2 \cdot 2056\right)$ $\begin{aligned} & \text { CI is given by } 4.6182 \pm \\ & \qquad 2.228 \\ & \qquad \times \frac{1.4851}{\sqrt{11}} \\ & =4.6182 \pm 0.9976=(3.620(6), 5.615(8)) \end{aligned}$ | B1 <br> M1 <br> B1 <br> M1 <br> A1 | Do not allow $s_{n}=1.4160\left(s_{n}{ }^{2}=\right.$ 2.0051). <br> ft c 's $\bar{x} \pm$. <br> ft c 's $S_{n 1}$. <br> c.a.o. Must be expressed as an interval. <br> ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. <br> Recovery to $t_{10}$ is OK . |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Assume Normality of population of "days lost after". <br> Since $3 \cdot 5$ lies outside the interval it seems that the target has not been achieved. | E1 <br> E1 |  | 7 |
|  |  |  |  | 18 |


| Q4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (i) | Obs 21 24 12 <br> Exp $26 \cdot 53$ 17.22 20.25$\begin{aligned} \therefore & X^{2}=\frac{(21-26 \cdot 53)^{2}}{26 \cdot 53}+\text { etc } \\ = & 1 \cdot 1527+2 \cdot 6695+3 \cdot 3611+1 \cdot 4545+0 \cdot 3879 \\ & +0 \cdot 0077+0 \cdot 0869 \\ = & 9 \cdot 1203 \end{aligned}$ <br> d.o.f. $=7-1=6$ <br> Refer to $\chi_{6}^{2}$. <br> Upper $5 \%$ point is 12.59 <br> $9 \cdot 1203<12 \cdot 59 \quad \therefore$ Result is not significant. <br> Evidence suggests the model fits the data at the $5 \%$ level. |  | 13 9 6 <br> 10.94 8.74 5.32 <br> Probabilities $\times 100$. <br> All Expected frequencies correct. <br> At least 4 values correct. <br> No ft from here if wrong. <br> No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. | 9 |
| (ii) | Data Diff = data -124 Rank of $\mid$ diff <br> 239 115 9 <br> 77 -47 3 <br> 179 55 4 <br> 221 97 7 <br> 100 -24 2 <br> 312 188 10 <br> 52 -72 5 <br> 129 5 1 <br> 236 112 8 <br> 42 -82 6$W_{-}=3+2+5+6=16$ <br> Refer to Wilcoxon single sample (/paired) tables for $n=10$. <br> Lower two-tail $10 \%$ point is ... <br> ... 10 . <br> $16>10 \therefore$ Result is not significant. <br> Seems there is no evidence against the median length being 124 . | M1 <br> M1 <br> A1 <br> B1 <br> M1 <br> M1A1 <br> E1 <br> E1 | For differences. <br> For ranks of \|difference|. <br> All correct. <br> ft from here if ranks wrong. <br> Or $W_{+}=9+4+7+10+1+8=39$ <br> No ft from here if wrong. <br> Or, if 39 used, upper point is 45 . <br> No ft from here if wrong. <br> Or $39<45$. <br> ft only c's test statistic. <br> ft only c's test statistic. | 9 |
|  |  |  |  | 18 |

## Mark Scheme 4769 June 2007

|  | $\begin{aligned} & \mathrm{f}(x)=\frac{1}{\theta} \quad 0 \leq x \leq \theta \\ & \begin{aligned} \mathrm{E}[X]=\frac{\theta}{2} \end{aligned} \\ & \begin{aligned} \mathrm{E}[2 \bar{X}]=2 \mathrm{E}[\bar{X}] & =2 \mathrm{E}[X] \\ & =\theta \\ & \therefore \text { unbiased } \end{aligned} \end{aligned}$ | B1 <br> M1 <br> A1 <br> E1 | Write-down, or by symmetry, or by integration. | 4 |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | $\sum x=2.3 \quad \therefore \bar{x}=\frac{2.3}{5}=0.46 \quad \therefore 2 \bar{x}=0.92$ <br> But we know $\theta \geq 1$ <br> $\therefore$ estimator can give nonsense answers, i.e. essentially useless | $\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & \text { E2 } \end{aligned}$ | (E1, E1) | 4 |
| (iii) | $\begin{aligned} & Y=\max \left\{X_{i}\right\}, \mathrm{g}(y)=\frac{n y^{n-1}}{\theta^{n}} \quad 0 \leq y \leq \theta \\ & \operatorname{MSE}(k Y)=\mathrm{E}\left[(k Y-\theta)^{2}\right]=\quad \mathrm{E}\left[k^{2} Y^{2}-2 k \theta Y+\theta^{2}\right]= \\ & k^{2} \mathrm{E}\left[Y^{2}\right]-2 k \theta \mathrm{E}[Y]+\theta^{2} \\ & \frac{d \mathrm{MSE}}{d k}= \\ & 2 k \mathrm{E}\left[Y^{2}\right]-2 \theta \mathrm{E}[Y]=0 \\ & \text { for } k=\frac{\theta \mathrm{E}[Y]}{\mathrm{E}\left[Y^{2}\right]} \\ & \frac{d^{2} \mathrm{MSE}}{d k^{2}}=2 \mathrm{E}\left[Y^{2}\right]>0 \quad \therefore \text { this is a minimum } \\ & \mathrm{E}[Y]=\int_{0}^{\theta} \frac{n y^{n}}{\theta^{n}} \mathrm{~d} y=\frac{n}{\theta^{n}} \frac{\theta^{n+1}}{n+1}=\frac{n \theta}{n+1} \\ & \mathrm{E}\left[Y^{2}\right]=\int_{0}^{\theta} \frac{n y^{n+1}}{\theta^{n}} \mathrm{~d} y=\frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2}=\frac{n \theta^{2}}{n+2} \\ & \therefore \text { minimising } k=\theta \frac{n \theta}{n+1} \frac{n+2}{n \theta^{2}}=\frac{n+2}{n+1} \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | BEWARE PRINTED ANSWER | 12 |
| (iv) | With this $k, k Y$ is always greater than the sample maximum <br> So it does not suffer from the disadvantage in part (ii) | E2 | $\begin{aligned} & \hline \text { (E1 E1) } \\ & \text { (E1 E1) } \end{aligned}$ | 4 |


| 2(i) | $\begin{aligned} & \mathrm{G}(t)=\mathrm{E}\left[t^{x}\right]=\sum_{x=0}^{n}\binom{n}{x}(p t)^{x}(1-p)^{n-x} \\ & =[(1-p)+p t]^{n} \\ & =(q+p t)^{n} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & 2 \\ & 1 \end{aligned}$ | Available as B 2 for write-down or as $1+1$ for algebra | 4 |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mu=\mathrm{G}^{\prime}(1) \quad \mathrm{G}^{\prime}(t)=n p(q+p t)^{n-1} \\ & \mathrm{G}^{\prime}(1)=n p \times 1=n p \\ & \sigma^{2}=\mathrm{G}^{\prime \prime}(1)+\mu-\mu^{2} \\ & \quad \mathrm{G}^{\prime \prime}(t)=n(n-1) p^{2}(q+p t)^{n-2} \\ & \mathrm{G}^{\prime \prime}(1)=n(n-1) p^{2} \\ & \therefore \sigma^{2}=n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2} \\ & =-n p^{2}+n p=n p q \end{aligned}$ | 1 <br> 1 <br> 1 <br> M1 <br> 1 |  | 6 |
| (iii) | $Z=\frac{X-\mu}{\sigma} \quad \text { Mean } 0, \text { Variance } 1$ | B1 | For BOTH | 1 |
| (iv) | $\begin{aligned} & \mathrm{M}(\theta)=\mathrm{G}\left(e^{\theta}\right)=\left(q+p e^{\theta}\right)^{n} \\ & Z=a X+b \text { with: } \\ & a=\frac{1}{\sigma}=\frac{1}{\sqrt{n p q}} \text { and } b=-\frac{\mu}{\sigma}=-\sqrt{\frac{n p}{q}} \\ & \mathrm{M}_{Z}(\theta)=e^{b \theta} \mathrm{M}_{X}(a \theta) \\ & \therefore \mathrm{M}_{Z}(\theta)=e^{-\sqrt{\frac{n p}{q}}}\left(q+p e^{\frac{1}{\sqrt{n p q}}}\right)^{n}= \\ & \left(-\cdots e^{-\frac{p \theta}{\sqrt{n p q}}}+p e^{\frac{1-p}{\sqrt{n p q}}}\right)^{n} \end{aligned}$ | 1 <br> M1 <br> 1 <br> 1 <br> 1 | BEWARE PRINTED ANSWER | 5 |
| (v) | $\mathrm{M}_{Z}(\theta)=\left(q-\frac{q p \theta}{\sqrt{n p q}}+\frac{q p^{2} \theta^{2}}{2 n p q}+\right.$ <br> terms in $n^{-3 / 2}, n^{-2}, \ldots \ldots \ldots \ldots .+$ $\begin{aligned} & \left.p+\frac{p q \theta}{\sqrt{n p q}}+\frac{p q^{2} \theta^{2}}{2 n p q}+\cdots \cdots \cdot\right)^{n}= \\ & \left(1+\frac{\theta^{2}}{2 n}+\cdots \cdots \cdot\right)^{n} \rightarrow \\ & e^{\theta^{2} / 2} \end{aligned}$ | M1 <br> M1 <br> 1 | For expansion of exponential terms <br> For indication that these can be neglected as $n \rightarrow \infty$. Use of result given in question | 4 |


| (vi) | $\mathrm{N}(0,1)$ <br> Because $e^{\sigma^{2} / 2}$ is the mgf of $\mathrm{N}(0,1)$ <br> and the relationship between distributions and <br> their mgfs is unique | E1 <br> E1 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| (vii) | "Unstandardising", $\mathrm{N}\left(\mu, \sigma^{2}\right)$ ie $\mathrm{N}(n p, n p q)$ | 1 | Parameters need to be given. | 1 |


| 3(i) | $\begin{aligned} & H_{0}: \mu_{A}=\mu_{B} \\ & H_{1}: \mu_{A} \neq \mu_{B} \end{aligned}$ <br> Where $\mu_{A}, \mu_{B}$ are the population means <br> Test statistic $\frac{26.4-25.38}{\sqrt{\frac{2.45}{7}+\frac{1.40}{5}}}=$ $\frac{1.02}{\sqrt{0.63}=0.7937}=1.285$ <br> Refer to $\mathrm{N}(0,1)$ <br> Double-tailed 5\% point is 1.96 <br> Not significant <br> No evidence that the population means differ | 1 <br> M1 <br> M1 <br> M1 <br> A1 <br> 1 <br> 1 <br> 1 1 | Do NOT allow $\bar{X}=\bar{Y}$ or similar <br> Accept absence of "population" if correct notation $\mu$ is used. Hypotheses stated verbally must include the word "population". <br> Numerator <br> Denominator two separate terms correct <br> No FT if wrong <br> No FT if wrong | 10 |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \text { CI ( for } \left.\mu_{A}-\mu_{B}\right) \text { is } \\ & 1.02 \pm \\ & 1.645 \times \\ & 1.02 \pm 1.3056=\quad 0.7937= \\ & (-0.2856,2.3256) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { cao } \end{aligned}$ | Zero out of 4 if not $\mathrm{N}(0,1)$ | 4 |
| (iii) | $H_{0}$ is accepted if $-1.96<$ test statistic $<1.96$ i.e. if $-1.96<\frac{\bar{x}-\bar{y}}{0.7937}<1.96$ <br> i.e. if $-1.556<\bar{x}-\bar{y}<1.556$ <br> In fact, $\bar{X}-\bar{Y} \sim \mathrm{~N}\left(2,0.7937^{2}\right)$ <br> So we want $\begin{aligned} & \mathrm{P}\left(-1.556<\mathrm{N}\left(2,0.7937^{2}\right)<1.556\right)= \\ & \mathrm{P}\left(\frac{-1.556-2}{0.7937}<\mathrm{N}(0,1)<\frac{1.556-2}{0.7937}\right)= \\ & \mathrm{P}(-4.48<\mathrm{N}(0,1)<-0.5594)=0.2879 \end{aligned}$ | M1 <br> M1 <br> A1 <br> M1 <br> M1 <br> M1 <br> A1 <br> cao | SC1 Same wrong test can get M1,M1,A0. <br> SC2 Use of 1.645 gets 2 out of 3 . <br> BEWARE PRINTED ANSWER <br> Standardising | 7 |
| (iv) | Wilcoxon would give protection if assumption of Normality is wrong. <br> Wilcoxon could not really be applied if underlying variances are indeed different. <br> Wilcoxon would be less powerful (worse Type II error behaviour) with such small samples if Normality is correct. | E1 <br> E1 <br> E1 |  | 3 |


| 4 (i) | There might be some consistent source of plot- <br> to-plot variation that has inflated the residual <br> and which the design has failed to cater for. | E2 | E1 - Some reference to extra <br> variation. <br> E1 - Some indication of a reason. | 2 |
| :--- | :--- | :--- | :--- | :--- |
| (ii) | Variation between the fertilisers should be <br> compared with experimental error. | E1 |  |  |
| If the residual is inflated so that it measures <br> more than experimental error, the <br> comparison of between - fertilisers variation <br> with it is less likely to reach significance. | E2 | (E1, E1) |  |  |

Mark Scheme 4771 June 2007
1.
(i)
2.

| (i) | Rucksack 1: 14; 6 | M1 | 6 must be in R1 |
| :---: | :---: | :---: | :---: |
|  | Rucksack 2: 11; 9 | A1 |  |
|  | final item will not fit. | B1 |  |
| (ii) | Order: 14, 11, 9, 6, 6 | B1 | ordering |
|  | Rucksack 1: 14; 11 | M1 | 11 in R1 |
|  | Rucksack 2: 9; 6; 6 | A1 |  |
|  | Rucksack 1: 14; 9 | B1 |  |
|  | Rucksack 2: 11; 6; 6 e.g. weights. | B1 |  |

3. 



5.
(i) \& (ii)


Route: G A F C D Weight: 17
(iii) Route: G B C F E D or G B A E D Weight: 6 Any capacitated route application.
(iv) Compute $\min ($ label, arc) and update working value if result is larger than current working value.
Label unlabelled vertex with largest working value.

M1
A1 arcs
A1 arc weights

M1 Dijkstra
A1 labels
A1 order of labelling
A2 working values

B1 B1
B1 B1
B1
B1 B1
B1
6.


Mark Scheme 4772 June 2007
1.
(a)(i) He should salute it.

Since all objects which don't move are painted any unpainted object must move, and anything that moves must be saluted.
(ii) We do not know.

We do not know about painted objects. Some will have been painted because they do not move, but there may be some objects which move which are painted. We do not know whether this object moves or not.
(b)

| $((\mathrm{m}$ | $\Rightarrow$ | $\mathrm{s})$ | $\wedge$ | $(\sim$ | m | $\Rightarrow$ | $\mathrm{p}))$ | $\wedge$ | $\sim$ | p | $\Rightarrow$ | s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $\mathbf{1}$ | 0 | 1 | 1 | 1 | 0 | $\mathbf{0}$ | 1 | $\mathbf{1}$ | 1 |
| 1 | 1 | 1 | $\mathbf{1}$ | 0 | 1 | 1 | 0 | $\mathbb{1}$ | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 1 |
| 1 | 0 | 0 | $\mathbf{0}$ | 0 | 1 | 1 | 1 | 0 | $\mathbf{0}$ | 1 | $\mathbf{1}$ | 0 |
| 1 | 0 | 0 | $\mathbf{0}$ | 0 | 1 | 1 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 |
| 0 | 1 | 1 | $\mathbf{1}$ | 1 | 0 | 1 | 1 | 0 | $\mathbf{0}$ | 1 | $\mathbf{1}$ | 1 |
| 0 | 1 | 1 | $\mathbf{0}$ | 1 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 1 |
| 0 | 1 | 0 | $\mathbf{1}$ | 1 | 0 | 1 | 1 | 0 | $\mathbf{0}$ | 1 | $\mathbf{1}$ | 0 |
| 0 | 1 | 0 | $\mathbf{0}$ | 1 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 |

(c) $\quad((m \Rightarrow s) \wedge(\sim m \Rightarrow p)) \wedge \sim p$
$\Leftrightarrow(\sim p \wedge(\sim m \Rightarrow p)) \wedge(m \Rightarrow s)$
$\Leftrightarrow(\sim p \wedge(\sim p \Rightarrow m)) \wedge(m \Rightarrow s) \quad$ (contrapositive)
$\Rightarrow m \wedge(m \Rightarrow s) \quad$ (modus ponens)
$\Rightarrow s$ (modus ponens)

B1
M1 A1

B1
M1 A1

M1 8 rows
A1 $\mathrm{m} \Rightarrow \mathrm{s}$
A1 $\quad \sim \mathrm{m} \Rightarrow \mathrm{p}$
A1 first $\wedge$
A1 second $\wedge$
A1 result

M1
A1 reordering
A1 contrapositive
A1 modus ponens
2.


## 2(cont).

(ii)(B)


$$
\text { EMV }=2 \text { by not betting }
$$

(iii) $\quad 2^{0.5} \times 0.4=0.566<1$, but $2^{1.5} \times 0.4=1.131>1$

A1

B1 course of action

M1 A1 A1
3.
(i)

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 6 | 3 | 6 | 5 |
| 2 | 3 | 4 | 3 | 2 |
| 3 | 6 | 3 | 2 | 1 |
| 4 | 5 | 2 | 1 | 2 |


|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 2 | 2 |
| 2 | 1 | 4 | 4 | 4 |
| 3 | 4 | 4 | 4 | 4 |
| 4 | 2 | 2 | 3 | 3 |

(ii) Distance from row 1 col 3 of distance matrix (6)

Route from row 1 col 3 of route matrix (2), then from row 2 col 3
(4), then from row 4 col 3 (3). So 1243 .
(iii)

(iv) 12431
length $=12$
1243421
(v)


MST has length 6 , so lower bound $=6+2+3=11$
(vi) TSP length is either 11 or 12

M1 distances
A2 6 changes
( -1 each error)
$\begin{array}{ll}\text { M1 } & \text { a correct update } \\ \text { A1 } & 1 \text { to } 3 \text { route (2) }\end{array}$
A2 rest
( -1 each error)

B1 B1
B1
B1

B1 whether or not loops included

B1
B1
B1

M1
A1 MST
A1 add back

B1 $\quad 11$ to 12
B1 either 11 or 12
4.
(i)

| $P$ | x | y | $\mathrm{s}_{1}$ | $\mathrm{~s}_{2}$ | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | 0 | 0 | 0 |
| 0 | 2 | 1 | 1 | 0 | 1250 |
| 0 | 2 | -1 | 0 | 1 | 0 |
|  |  |  |  |  |  |
| 1 | 1 | 0 | 1 | 0 | 1250 |
| 0 | 2 | 1 | 1 | 0 | 1250 |
| 0 | 4 | 0 | 1 | 1 | 1250 |

$1250 \mathrm{~m}^{2}$ of paving and no decking
(ii) 2-phase

| A | P | x | y | $\mathrm{s}_{1}$ | $\mathrm{~s}_{2}$ | $\mathrm{~s}_{3}$ | a | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | 200 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1250 |
| 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 1250 |
| 0 | 0 | 4 | 0 | 1 | 1 | 0 | 0 | 1250 |
| 0 | 0 | 1 | 0 | 0 | 0 | -1 | 1 | 200 |
|  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 1050 |
| 0 | 0 | 0 | 1 | 1 | 0 | 2 | -2 | 850 |
| 0 | 0 | 0 | 0 | 1 | 1 | 4 | -4 | 450 |
| 0 | 0 | 1 | 0 | 0 | 0 | -1 | 1 | 200 |

Big-M alternative

| $P$ | $x$ | $y$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | $a$ | $R H S$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $1-M$ | 0 | 1 | 0 | $M$ | 0 | $1250-2 M$ |
| 0 | 2 | 1 | 1 | 0 | 0 | 0 | 1250 |
| 0 | 4 | 0 | 1 | 1 | 0 | 0 | 1250 |
| 0 | 1 | 0 | 0 | 0 | -1 | 1 | 200 |
|  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 | 0 | 1 | $M-1$ | 1050 |
| 0 | 0 | 1 | 1 | 0 | 2 | -2 | 850 |
| 0 | 0 | 0 | 1 | 1 | 4 | -4 | 450 |
| 0 | 1 | 0 | 0 | 0 | -1 | 1 | 200 |

$850 \mathrm{~m}^{2}$ of paving and $200 \mathrm{~m}^{2}$ of decking.

M1 initial tableau
A1

M1 pivot
A2 ( -1 each error)

B1 interpretation

M1 A1 new objective
B1 surplus
B1 artificial
B1 new constraint

M1
A2

M1 A1 new objective
B1 surplus
B1 artificial
B1 new constraint

MI
A2

A1 interpretation
(iii)

| C | x | y | $\mathrm{s}_{1}$ | $\mathrm{~s}_{2}$ | $\mathrm{~s}_{3}$ | $\mathrm{~s}_{4}$ | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1.25 | 0 | 1.75 | 0 | 1212.5 |
| 0 | 0 | 1 | 1 | 0 | 2 | 0 | 850 |
| 0 | 0 | 0 | 1 | 1 | 4 | 0 | 450 |
| 0 | 1 | 0 | 0 | 0 | -1 | 0 | 200 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 50 |
|  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | -0.5 | 0 | 0 | -1.75 | 1125 |
| 0 | 0 | 1 | -1 | 0 | 0 | -2 | 750 |
| 0 | 0 | 0 | -3 | 1 | 0 | -4 | 250 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 250 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 50 |

$750 \mathrm{~m}^{2}$ of paving and $250 \mathrm{~m}^{2}$ of decking at an annual cost of $£ 1125$

B1 new objective

B1 new constraint

M1
A1

A1 interpretation

Mark Scheme 4773 June 2007
1.
(i) $\quad u_{n+2}=u_{n+1}+p u_{n}$
(ii) Auxiliary equation is $\lambda^{2}-\lambda-0.11=0$

Solution is $u_{n}=22.5(1.1)^{\mathrm{n}}-2.5(-0.1)^{\mathrm{n}}$
(iii)

| Rec rel | Formula |  | Int RR |
| ---: | ---: | ---: | ---: |
| 20.0000 | 0 | 20.0000 | 20 |
| 25.0000 | 1 | 25.0000 | 25 |
| 27.2000 | 2 | 27.2000 | 27 |
| 29.9500 | 3 | 29.9500 | 30 |
| 32.9420 | 4 | 32.9420 | 33 |
| 36.2365 | 5 | 36.2365 | 36 |
| 39.8601 | 6 | 39.8601 | 40 |
| 43.8461 | 7 | 43.8461 | 44 |
| 48.2307 | 8 | 48.2307 | 48 |
| 53.0538 | 9 | 53.0538 | 53 |
| 58.3592 | 10 | 58.3592 | 58 |
| 64.1951 | 11 | 64.1951 | 64 |
| 70.6146 | 12 | 70.6146 | 70 |
| 77.6761 | 13 | 77.6761 | 77 |
| 85.4437 | 14 | 85.4437 | 85 |
| 93.9881 | 15 | 93.9881 | 93 |
| 103.3869 | 16 | 103.3869 | 102 |
| 113.7256 | 17 | 113.7256 | 112 |
| 125.0981 | 18 | 125.0981 | 123 |
| 137.6080 | 19 | 137.6080 | 135 |
| 151.3687 | 20 | 151.3687 | 149 |
| Formula $=$ INT(H3+B\$2*H2+0.5) |  |  |  |

(iv) $\quad v_{n+2}=(1-r) v_{n+1}+p v_{n}$

M1 A1

M1 A1
M1 gen homogeneous
A1 with $1.1 \&-0.1$
B1 case $1\left(u_{0}=20\right)$

+ case $2\left(u_{1}=25\right)$
M1 simultaneous
A1 22.5 and -2.5
B1 final answer

B1 recurrence relation

B1 checking formula
B1 discretising
48
53
58
64
70
77
85

93
102
112
123
135
149
Formula: $=\mathrm{INT}(\mathrm{H} 3+\mathrm{B} \$ 2 * \mathrm{H} 2+0.5)$

## 1. (cont)


2.
(i)

(ii) e.g. locations 3, 6 and 7 for only two trees, so one must be rejected. Therefore other 6 locations needed.
(iii)

(iv) e.g. P2-5-M-6

$$
\begin{array}{llllll}
\text { P1 } & \text { P2 } & \text { E } & \text { M } & \text { J } & \text { A } \\
4 & 5 & 1 & 6 & 2 & 3
\end{array}
$$

2 (cont).
(v) Max
$\mathrm{P} 11+\mathrm{P} 14+\mathrm{P} 15+\mathrm{P} 21+\mathrm{P} 24+\mathrm{P} 25+\mathrm{E} 1+\mathrm{E} 2+\mathrm{M} 3+\mathrm{M} 5+\mathrm{M} 6$

$$
+\mathrm{J} 2+\mathrm{J} 4+\mathrm{A} 3+\mathrm{A} 6+\mathrm{A} 7
$$

st $\quad \mathrm{P} 11+\mathrm{P} 14+\mathrm{P} 15<=1$
$\mathrm{P} 21+\mathrm{P} 24+\mathrm{P} 25<=1$
$\mathrm{E} 1+\mathrm{E} 2<=1$
$\mathrm{M} 3+\mathrm{M} 5+\mathrm{M} 6<=1$
$\mathrm{J} 2+\mathrm{J} 4<=1$
$\mathrm{A} 3+\mathrm{A} 6+\mathrm{A} 7<=1$
$\mathrm{P} 11+\mathrm{P} 21+\mathrm{E} 1<=1$
$\mathrm{E} 2+\mathrm{J} 2<=1$
M3 + A3 $<=1$
$\mathrm{P} 14+\mathrm{P} 24+\mathrm{J} 4<=1$
P15+P25+M5<=1
M6 + A $6<=1$
A $7<=1$
End
LP OPTIMUM FOUND AT STEP 13
OBJECTIVE FUNCTION VALUE

1) 6.000000

| VARIABLE | VALUE | REDUCED COST |
| :---: | :--- | :---: |
| P11 | 0.000000 | 0.000000 |
| P14 | 0.000000 | 0.000000 |
| P15 | 1.000000 | 0.000000 |
| P21 | 0.000000 | 0.000000 |
| P24 | 1.000000 | 0.000000 |
| P25 | 0.000000 | 0.000000 |
| E1 | 1.000000 | 0.000000 |
| E2 | 0.000000 | 0.000000 |
| M3 | 0.000000 | 0.000000 |
| M5 | 0.000000 | 1.000000 |
| M6 | 1.000000 | 0.000000 |
| J2 | 1.000000 | 0.000000 |
| J4 | 0.000000 | 0.000000 |
| A3 | 0.000000 | 0.000000 |
| A6 | 0.000000 | 0.000000 |
| A7 | 1.000000 | 0.000000 |

P1 P2 E M J A
$\begin{array}{llllll}5 & 4 & 1 & 6 & 2 & 7\end{array}$
3.
(i) e.g. C 2 C 3 C 5 C 7 C 9 C 11
(ii)

Min $\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 4+\mathrm{C} 5+\mathrm{C} 6+\mathrm{C} 7+\mathrm{C} 8+\mathrm{C} 9+\mathrm{C} 10+\mathrm{C} 11+\mathrm{C} 12$
st $\quad \mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 4>=1$
$\mathrm{C} 4+\mathrm{C} 5+\mathrm{C} 6>=1$
$\mathrm{C} 6+\mathrm{C} 7+\mathrm{C} 8+\mathrm{C} 9+\mathrm{C} 10>=1$
$\mathrm{C} 1+\mathrm{C} 10+\mathrm{C} 11>=1$
C2>=1
$\mathrm{C} 3+\mathrm{C} 8+\mathrm{C} 12>=1$
$\mathrm{C} 5+\mathrm{C} 12>=1$
C11>=1
C9>=1
C7>=1
end
(iii)

LP OPTIMUM FOUND AT STEP 7
OBJECTIVE FUNCTION VALUE

1) 6.000000

VARIABLE VALUE REDUCED COST
$\begin{array}{lll}\text { C1 } & 0.000000 & 0.000000\end{array}$
$\begin{array}{lll}\mathrm{C} 2 & 1.000000 & 0.000000\end{array}$
C3 $\quad 0.000000 \quad 1.000000$
$\begin{array}{lll}\mathrm{C} 4 & 1.000000 & 0.000000\end{array}$
C5 $\quad 0.000000 \quad 0.000000$
C6 $\quad 0.000000 \quad 0.000000$
C7 $\quad 1.000000 \quad 0.000000$
$\begin{array}{lll}\mathrm{C} 8 & 0.000000 & 1.000000\end{array}$
$\begin{array}{lll}\mathrm{C} 9 & 1.000000 & 0.000000\end{array}$
C10 $0.000000 \quad 0.000000$
$\begin{array}{lll}\mathrm{C} 11 & 1.000000 & 0.000000\end{array}$
$\begin{array}{lll}\mathrm{C} 12 & 1.000000 & 0.000000\end{array}$
Use locations 2, 4, 7, 9, 11 and 12.
6 cameras needed
(iv) New objective:
$5 \mathrm{C} 1+2 \mathrm{C} 2+3 \mathrm{C} 3+5 \mathrm{C} 4+4 \mathrm{C} 5+1.5 \mathrm{C} 6+2 \mathrm{C} 7+2 \mathrm{C} 8+5 \mathrm{C} 9$
$+3 \mathrm{C} 10+4 \mathrm{C} 11+7 \mathrm{C} 12$
(v) Running

Use locations 2, 5, 7, 8, 9 and 11.
Cost $=£ 19000$

M1 A1

M1 objective
A1
M1
A5
constraints
( -1 each error)

B1 running
4.
(i) e.g.
$10 \quad=\operatorname{LOOKUP}(\operatorname{RAND}(), \mathrm{B} 1: \mathrm{B} 3, \mathrm{~A} 1: \mathrm{A} 3)$
20.1
30.4
(ii) $=\operatorname{LOOKUP}(\operatorname{RAND}(), \$ B \$ 3: \$ B \$ 5, \$ A \$ 3: \$ A \$ 5)$

+ accumulation
e.g.

| 2 | 2 |
| ---: | ---: |
| 3 | 5 |
| 2 | 7 |
| 3 | 10 |
| 2 | 12 |
| 3 | 15 |
| 3 | 18 |
| 3 | 21 |
| 3 | 24 |
| 3 | 27 |
| 2 | 29 |
| 2 | 31 |
| 3 | 34 |
| 2 | 36 |
| 2 | 38 |
| 3 | 41 |

(iii) e.g.

| day 14 | day 15 | day16 | no. of replacements |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 5 |
| 1 | 0 | 0 | 6 |
| 0 | 0 | 1 | 5 |
| 0 | 0 | 1 | 5 |
| 1 | 0 | 0 | 6 |
| 0 | 1 | 0 | 5 |
| 0 | 1 | 0 | 6 |
| 1 | 0 | 1 | 5 |
| 0 | 1 | 0 | 5 |
| 1 | 0 | 1 | 6 |
|  |  |  |  |
| 0.4 | 0.3 | 0.5 | 5.4 |

Q4 (cont)

| (iv) | e.g. |  |  |  |  |  |  | changed probabilities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Replacements day 1 day 2 |  |  |  |  |  | B1 |  |
|  | 1 | 0 | 1 | 1 | 2 | 6 |  |  |
|  | 2 | 0.1 | 1 | 2 | 0 | 7 |  |  |
|  |  |  | 2 | 4 | 0 | 7 |  |  |
|  |  |  | 2 | 6 | 1 | 6 |  |  |
|  |  |  | 2 | 8 | 1 | 6 | B1 | repetitions |
|  |  |  | 2 | 10 | 0 | 7 |  |  |
|  |  |  | 2 | 12 | 1 | 6 | B1 | results averages |
|  |  |  | 2 | 14 | 0 | 7 | B1 |  |
|  |  |  | 1 | 15 | 0 | 7 |  |  |
|  |  |  | 2 | 17 | 1 | 6 |  |  |
|  |  |  | 2 | 19 |  |  |  |  |
|  |  |  | 2 | 21 | 0.6 | 6.5 |  |  |
|  | $\begin{aligned} & 5.4^{*}(50+25)=405 \text { versus } \\ & 0.6^{*}(50+25)+6.5 *(30+25)=402.5 \end{aligned}$ |  |  |  |  |  | B1B1 |  |
|  |  |  |  |  |  |  |  |  |
| (v) | More repetitions. |  |  |  |  |  |  | B1 |  |

## Mark Scheme 4776

 June 20071

| x | $\mathrm{f}(\mathrm{x})$ |  |  |
| ---: | ---: | ---: | ---: |
| 1 | 2.414214 | $<3$ |  |
| 1.4 | 3.509193 | $>3$ |  |$\quad$ change of sign hence root in $(1,1.4)$

[M1A1]
$1.2 \quad 2.92324<3 \quad$ root in $(1.2,1.4)$ est 1.3 mpe 0.
$1.3 \quad 3.206575>3 \quad$ root in $(1.2,1.3) \quad$ est 1.25 mpe 0.05
$1.25 \quad 3.0625 \quad>3 \quad$ root in $(1.2,1.25)$ est 1.225 mpe 0.025
[M1A1A1]
mpe
mpe reduces by a factor of $2,4,8, \ldots$
Better than a factor of 5 after 3 more iterations
[M1A1]

2
$\mathrm{x} \quad 1 /\left(1+\mathrm{x}^{\wedge} 4\right)$

|  |  | values: | [A1] |
| :--- | :--- | :--- | :--- |
| $\mathrm{M}=$ | 0.498054 |  |  |
| $\mathrm{~T}=$ | 0.485294 |  |  |
| $\mathrm{~S}=(2 \mathrm{M}+\mathrm{T}) / 3=$ | 0.493801 |  | [A1] |
| [A1] |  |  |  |
| [M1] |  |  |  |


| h | S | $\Delta \mathrm{S}$ |  |  |
| :---: | ---: | :--- | ---: | ---: |
| 0.5 | 0.493801 |  |  |  |
| 0.25 | 0.493952 | 0.000151 | / one term enough | 0.493962 |

3 Cosine rule
5.204972
[M1A1]
Approx formula: 5.205228
[A1]
Absolute error: 0.000255
[B1]
Relative error:
0.000049
[B1]

4(i) $r$ represents the relative error in $X$
[TOTAL 5]
(ii) $\mathrm{X}^{\mathrm{n}}=\mathrm{x}^{\mathrm{n}}(1+\mathrm{r})^{\mathrm{n}} \approx \mathrm{x}^{\mathrm{n}}(1+\mathrm{nr})$ for small r
[A1E1]
hence relative error is nr
(iii) $\mathrm{pi}=3.141593$ (abs error: 0.001264 ) [M1]
$22 / 7=3.142857$ rel error: 0.000402 [A1]
$\begin{array}{llll}\left.\text { approx relative error in } \pi^{2} \text { (multiply by } 2\right) \text { : } & 0.000805 & (0.0008) \\ \text { approx relative error in sqrt }(\pi) \text { (multiply by } 0.5): & 0.000201 & (0.0002)\end{array}$ [M1M1A1]

|  |  |  |  |  | [TOTAL 8] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | X-104 | $\mathrm{f}(\mathrm{x})$ | $f(x)=$ |  | [M1A1] |
|  |  | 3 |  | $3 \mathrm{x}(\mathrm{x}-4) /(-1)(-5)+$ |  |
|  |  | 2 |  | $2(\mathrm{x}+1)(\mathrm{x}-4) /(1)(-4)+$ | [A1] |
|  |  | 9 |  | $9(\mathrm{x}+1) \mathrm{x} /(5)(4)$ | [A1] |
|  |  |  | $\mathrm{f}(\mathrm{x})=$ | $0.55 \mathrm{x}^{2}-0.45 \mathrm{x}+2$ | [A1] |
|  |  |  | $\mathrm{f}^{\prime}(\mathrm{x})=$ | $1.1 \mathrm{x}-0.45$ | [B1] |
|  |  |  | Hence mini | num at $\mathrm{x}=0.45 / 1.1=0.41$ | [A1] |
|  |  |  |  |  | [TOTAL 7] |

6(i) Sketch showing curve, root, initial estimate, tangent, intersection of tangent with x -axis as improved estimate
(ii)

Sketch showing root, $\alpha$
[G2]
E.g. starting values just to the left of the root can produce an
x 1 that is the wrong side of the asymptote
E.g. starting values further left
can converge to zero.
(iii) Convincing algebra to obtain the N-R formula

| r | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| xr | 1.2 | 1.169346 | 1.165609 | 1.165561 | 1.165561 |
|  | root is 1.1656 to 4 dp |  |  |  | [M1A1A1] |
|  | [A1] |  |  |  |  |


| differences from root | -0.03065 | -0.00374 | $-4.8 \mathrm{E}-05$ | Accept diffs of successive terms |
| :--- | :---: | :---: | :---: | :---: |
| ratio of differences | 0.1219 | 0.012877 |  |  |
| ratio of differences is decreasing (by a large factor), so faster than first order | [M1A1] |  |  |  |
| [E1] |  |  |  |  |


| x | $\mathrm{g}(\mathrm{x})$ | $\Delta \mathrm{g}$ | $\Delta^{2} \mathrm{~g}$ |
| ---: | ---: | ---: | ---: |
| 1 | 2.87 |  |  |
| 2 | 4.73 | 1.86 |  |
| 3 | 6.23 | 1.50 | -0.36 |
| 4 | 7.36 | 1.13 | -0.37 |
| 5 | 8.05 | 0.69 | -0.44 |

Not quadratic
[E1]
Because second differences not constant
(ii)

| x | $\mathrm{g}(\mathrm{x})$ | $\Delta \mathrm{g}$ | $\Delta^{2} \mathrm{~g}$ |
| ---: | ---: | ---: | ---: |
| 1 | 2.87 |  |  |
| 3 | 6.23 | 3.36 |  |
| 5 | 8.05 | 1.82 | -1.54 |

$$
\begin{aligned}
\mathrm{Q}(\mathrm{x}) & =2.87+3.36(\mathrm{x}-1) / 2-1.54(\mathrm{x}-1)(\mathrm{x}-3) / 8 \\
& =0.6125+2.45 \mathrm{x}-0.1925 \mathrm{x}^{2}
\end{aligned}
$$

(iii)

| x | $\mathrm{Q}(\mathrm{x})$ | $\mathrm{g}(\mathrm{x})$ | error | rel error |
| :--- | ---: | ---: | ---: | ---: |
| 2 | 4.7425 | 4.73 | 0.0125 | 0.002643 |
| 4 | 7.3325 | 7.36 | -0.0275 | -0.00374 |


| $\mathrm{Q}:$ | [A1A1] |
| ---: | ---: |
| errors: | [A1] |
| rel errors: | [M1A1] |
|  | [subtotal 5] |
|  | [TOTAL 18] |

Mark Scheme 4777 June 2007

1(i) $\quad \begin{aligned} \text { Convincing algebra to } k & =\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) /\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \\ \text { Convincing algebra to } \alpha & =\left(\mathrm{x}_{2}-\mathrm{kx}\right) /(1-\mathrm{k}) \text { or equivalent }\end{aligned}$
[M1A1]
[M1A1A1] [subtotal 5]
(ii)

| x | $\mathrm{y}=\mathrm{x}$ | $\mathrm{y}=\mathrm{f}(\mathrm{x})$ |
| ---: | ---: | ---: |
| 0 | 0 | 1.5 |
| 0.5 | 0.5 | 1.527842 |
| 1 | 1 | 1.662144 |
| 1.5 | 1.5 | 1.755252 |
| 2 | 2 | 1.961151 |
| 2.5 | 2.5 | 2.235574 |
| 3 | 3 | 2.586161 |
| 3.5 | 3.5 | 3.022674 |
| 4 | 4 | 3.557265 |
| 4.5 | 4.5 | 4.204819 |
| 5 | 5 | 4.983366 |
| 5.5 | 5.5 | 5.914581 |
| 6 | 6 | 7.024391 |


[G2]

| converges | 2 | diverges | 4.5 | 5 | 5.5 | set up |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| slowly | 1.961151 | from | 4.204819 | 4.983366 | 5.914581 | iteration | [M1A1] |
| to | 1.942783 | root | 3.807921 | 4.95514 | 6.820878 |  |  |
| root | 1.934241 | near | 3.339412 | 4.90763 | 9.3175 | near 2 | [A1] |
| near | 1.9303 | 5 | 2.872419 | 4.828739 | 21.8726 |  |  |
| 2 | 1.928489 |  | 2.488967 | 4.70068 | 1466.344 | near 5 | [A1A1] |
|  | 1.927657 |  | 2.228729 | 4.500432 | $1.9 \mathrm{E}+212$ | (theoretical ar | ments |
|  | 1.927276 |  | 2.07777 | 4.205432 | \#NUM! | involving f'ac | eptable) |

[subtotal 7]
(iii)

| x0 | x 1 | x 2 | k | new x 0 |  |  | k | $1]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.961151 | 1.942783 | 0.472807 | 1.92631 | =alph |  |  |  |
| 1.92631 | 1.926659 | 1.926818 | 0.458143 | 1.926953 |  |  | est of root | [M1A1] |
| 1.926953 | 1.926953 | 1.926953 | 0.45827 | 1.926953 |  |  | use as x 0 | [M1] |
|  |  |  |  |  |  |  | iterate | [M1A1] |
| x0 | x1 | x 2 | k | new x0 |  |  |  |  |
| 5 | 4.983366 | 4.95514 | 1.696813 | 5.023872 |  |  | alpha | [A1] |
| 5.023872 | 5.024167 | 5.024673 | 1.71656 | 5.023461 |  |  |  |  |
| 5.023461 | 5.023461 | 5.023461 | 1.716217 | 5.023461 | = beta |  | beta | [A1] |
| x0 | x1 | x2 | k | new x0 |  |  |  |  |
| 4.6 | 4.349412 | 3.996895 | 1.406756 | 5.216066 |  |  |  |  |
| 5.216066 | 5.365628 | 5.647933 | 1.887551 | 5.047555 |  | range |  |  |
| 5.047555 | 5.064991 | 5.095267 | 1.73646 | 5.02388 |  | 4.6 to 5.7 |  | [M1A1A1] |
| 5.02388 | 5.024181 | 5.024697 | 1.716567 | 5.023461 |  |  |  |  |
| 5.023461 | 5.023461 | 5.023461 | 1.716217 | 5.023461 |  |  |  |  |

[subtotal 12]

2 (i) Substitute $f(x)=1, x^{2}, x^{4}, x^{6}$ into the integration fomula
Obtain $\quad a+b=h$
$a \alpha^{2}+b \beta^{2}=h^{3} / 3$
[A1]
$a \alpha^{4}+b \beta^{4}=h^{5} / 5$
[A1]
$\left(a \alpha^{6}+b \beta^{6}=h^{7} / 7\right)$
[subtotal 7]
$\begin{array}{lrrrrr}\text { (ii) } & \text { E.g. } & \mathrm{x} & 0.1 & 0.01 & 0.001\end{array}$
$\begin{array}{rrrr}\mathrm{X} & 0.1 & 0.01 & 0.001 \\ \sin (\mathrm{x}) / \mathrm{x} & 0.998334 & 0.999983 & 1\end{array}$
[B1]
(ii)


Single
application
of Gaussian 4-pt rule

| $\mathrm{m}=$ | 1.570796 | $\mathrm{~h}=$ | 1.570796 |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\alpha, \beta$ | x | $\mathrm{f}(\mathrm{x})$ | $\mathrm{a}, \mathrm{b}$ |  |  |
| -0.86114 | 0.218127 | 0.992089 | 0.347855 | 0.345103 | set up |
| -0.33998 | 1.036755 | 0.830241 | 0.652145 | 0.541438 | [M4] |
| 0.339981 | 2.104837 | 0.408942 | 0.652145 | 0.26669 |  |
| 0.861136 | 2.923466 | 0.074022 | 0.347855 | 0.025749 |  |
|  |  |  | sum: | 1.17898 |  |
|  |  |  | integral: | $\mathbf{1 . 8 5 1 9 3 7}$ | [A1] |

Subdividing the

$$
\mathrm{m}=0.785398
$$

$\mathrm{h}=$| 0.785398 |
| ---: | ---: |
| gives |$\quad 1.370762$

$$
\mathrm{m}=2.356194
$$

(iii)

By trial and error

| $\mathrm{m}=$ | 0.53242 | $\mathrm{~h}=$ | 0.53242 |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\alpha, \beta$ | x | $\mathrm{f}(\mathrm{x})$ | $\mathrm{a}, \mathrm{b}$ |  |  |
| -0.86114 | 0.073934 | 0.999089 | 0.347855 | 0.347538 | trial |
| -0.33998 | 0.351407 | 0.979546 | 0.652145 | 0.638806 | and |
| 0.339981 | 0.713433 | 0.917302 | 0.652145 | 0.598214 | error |
| 0.861136 | 0.990906 | 0.8442 | 0.347855 | 0.293659 | [M1A1] |
|  |  |  | $\mathbf{1}$ |  |  |
|  | Hence $\mathbf{t}=\mathbf{2 m}=$ | $\mathbf{1 . 0 6 5}$ | $(1.06484)$ | [M1A1] |  |
| [subtotal 4] |  |  |  |  |  |




7895-8, 3895-8 AS and A2 MEI Mathematics
June 2007 Assessment Session

Unit Threshold Marks

| Unit |  |  |  | Maximum <br> Mark | A | B | $\mathbf{C}$ | $\mathbf{D}$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All units | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| $\mathbf{4 7 5 1}$ | Raw | 72 | 54 | 46 | 38 | 31 | 24 | 0 |
| $\mathbf{4 7 5 2}$ | Raw | 72 | 54 | 47 | 40 | 33 | 26 | 0 |
| $\mathbf{4 7 5 3}$ | Raw | 72 | 60 | 52 | 45 | 38 | 30 | 0 |
| $\mathbf{4 7 5 3 / 0 2}$ | Raw | 18 | 15 | 13 | 11 | 9 | 8 | 0 |
| $\mathbf{4 7 5 4}$ | Raw | 90 | 65 | 57 | 49 | 41 | 34 | 0 |
| $\mathbf{4 7 5 5}$ | Raw | 72 | 59 | 51 | 44 | 37 | 30 | 0 |
| $\mathbf{4 7 5 6}$ | Raw | 72 | 52 | 45 | 38 | 32 | 26 | 0 |
| $\mathbf{4 7 5 7}$ | Raw | 72 | 53 | 46 | 39 | 32 | 25 | 0 |
| $\mathbf{4 7 5 8}$ | Raw | 72 | 55 | 47 | 40 | 33 | 25 | 0 |
| $\mathbf{4 7 5 8 / 0 2}$ | Raw | 18 | 15 | 13 | 11 | 9 | 8 | 0 |
| $\mathbf{4 7 6 1}$ | Raw | 72 | 59 | 51 | 43 | 36 | 29 | 0 |
| $\mathbf{4 7 6 2}$ | Raw | 72 | 59 | 52 | 45 | 38 | 31 | 0 |
| $\mathbf{4 7 6 3}$ | Raw | 72 | 61 | 53 | 45 | 37 | 30 | 0 |
| $\mathbf{4 7 6 4}$ | Raw | 72 | 62 | 54 | 46 | 38 | 31 | 0 |
| $\mathbf{4 7 6 6}$ | Raw | 72 | 55 | 48 | 41 | 35 | 29 | 0 |
| $\mathbf{4 7 6 7}$ | Raw | 72 | 58 | 51 | 44 | 37 | 30 | 0 |
| $\mathbf{4 7 6 8}$ | Raw | 72 | 62 | 53 | 45 | 37 | 29 | 0 |
| $\mathbf{4 7 6 9}$ | Raw | 72 | 54 | 47 | 40 | 33 | 27 | 0 |
| $\mathbf{4 7 7 1}$ | Raw | 72 | 59 | 53 | 47 | 41 | 35 | 0 |
| $\mathbf{4 7 7 2}$ | Raw | 72 | 52 | 45 | 39 | 33 | 27 | 0 |
| $\mathbf{4 7 7 3}$ | Raw | 72 | 59 | 51 | 43 | 36 | 29 | 0 |
| $\mathbf{4 7 7 6}$ | Raw | 72 | 53 | 46 | 40 | 33 | 26 | 0 |
| $\mathbf{4 7 7 6 / 0 2}$ | Raw | 18 | 13 | 11 | 9 | 8 | 7 | 0 |
| $\mathbf{4 7 7 7}$ | Raw | 72 | 55 | 47 | 39 | 32 | 25 | 0 |

## Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{7 8 9 5 - 7 8 9 8}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |
| $\mathbf{3 8 9 5 - 3 8 9 8}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | C | D | E | U | Total Number of <br> Candidates |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{7 8 9 5}$ | 43.5 | 64.3 | 80.2 | 90.9 | 97.5 | 100 | 9403 |
| $\mathbf{7 8 9 6}$ | 57.9 | 78.6 | 90.1 | 96.2 | 98.6 | 100 | 1301 |
| $\mathbf{7 8 9 7}$ | 88.2 | 97.1 | 100 | 100 | 100 | 100 | 34 |
| $\mathbf{7 8 9 8}$ | 100 | 100 | 100 | 100 | 100 | 100 | 2 |
| $\mathbf{3 8 9 5}$ | 27.4 | 42.6 | 57.3 | 70.9 | 82.9 | 100 | 12342 |
| $\mathbf{3 8 9 6}$ | 55.4 | 73.4 | 85.1 | 92.1 | 97.1 | 100 | 1351 |
| $\mathbf{3 8 9 7}$ | 75.2 | 87.2 | 97.3 | 99.1 | 100 | 100 | 109 |
| $\mathbf{3 8 9 8}$ | 71.4 | 82.1 | 82.1 | 96.4 | 96.4 | 100 | 28 |

For a description of how UMS marks are calculated see;
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication

# OCR (Oxford Cambridge and RSA Examinations) 

## 1 Hills Road

Cambridge
CB1 2EU
OCR Customer Contact Centre
(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

