

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2007

3895-8/7895-8/MS/R/06

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (MEI) (7895) Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit	Content	Page
4751	Introduction to Advanced Mathematics (C1)	
4752	Concepts for Advanced Mathematics (C2)	
4753	Methods for Advanced Mathematics (C3)	
4754	Applications of Advanced Mathematics (C4)	
4755	Further Concepts for Advanced Mathematics (FP1)	
4756	Further Methods for Advanced Mathematics (FP2)	
4757	Further Applications of Advanced Mathematics (FP3)	
4758	Differential Equations	
4761	Mechanics 1	
4762	Mechanics 2	
4763	Mechanics 3	
4764	Mechanics 4	
4766	Statistics 1	
4767	Statistics 2	
4768	Statistics 3	
4769	Statistics 4	
4771	Decision Mathematics 1	
4772	Decision Mathematics 2	
4773	Decision Mathematics Computation	
4776	Numerical Methods	
4777	Numerical Computation	
*	Grade Thresholds	

Mark Scheme 4751 June 2007 Section A

1	x > -0.6 o.e. eg $-3/5 < x$ isw	3	M2 for $-3 < 5x$ or $x > \frac{3}{5}$ or M1 for	
			$-5x < 3$ or $k < 5x$ or $-3 < kx$ [condone \le for Ms]; if 0, allow SC1 for -0.6 found	3
2	$t = [\pm] \sqrt{\frac{2s}{a}} \text{ o.e.}$	3	B2 for <i>t</i> omitted or $t = \sqrt{\frac{s}{\frac{1}{2}a}}$ o.e.	
			M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their t^2	3
3	'If 2 <i>n</i> is an even integer, then <i>n</i> is an odd integer'	1	or: $2n$ an even integer $\Rightarrow n$ an odd integer	
	showing wrong eg 'if n is an even integer, $2n$ is an even integer'	1	or counterexample eg $n = 2$ and $2n = 4$ seen [in either order]	2
4	c = 6 k = -7	1 2	M1 for $f(2) = 0$ used or for long division as far as $x^3 - 2x^2$ in working	3
5	(i) $4x^4y$	2	M1 for two elements correct; condone y^1	
	(ii) 32	2	M1 for $\left(\frac{2}{1}\right)^5$ or 2^5 soi or $\left(\frac{1}{32}\right)^{-1}$ or $\frac{1}{\frac{1}{32}}$	4
6	$-720 [x^3]$	4	B3 for 720; M1 for each of 3^2 and $\pm 2^3$ or $(-2x)^3$ or $(2x)^3$,	
			and M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ or for 1 5 10 10 5 1 seen but not for ${}^{5}C_{3}$	4
7	$\frac{-5}{10}$ o.e. isw	3	M1 for $4x + 5 = 2x \times -3$ and M1 for $10x = -5$ o.e. <u>or</u> M1 for	
			$2 + \frac{5}{2x} = -3$ and M1 for $\frac{5}{2x} = -5$ o.e.	3
8	(i) $2\sqrt{2}$ or $\sqrt{8}$	2	M1 for $7\sqrt{2}$ or $5\sqrt{2}$ seen	
	(::) 20 120/5	2	M1 for attempt to multiply num and	
	(11) 30 - 12 3	5	denom. by $2 - \sqrt{5}$ and M1 (dep) for denom	
			-1 or $4-5$ soi or for numerator $12\sqrt{5}-30$	5
9	(i) ±5	2	B1 for one soln	
	(ii) $y = (x - 2)^2 - 4$ or $y = x^2 - 4x$ o.e. isw	2	M1 if y omitted or for $y = (x + 2)^2 - 4$ or $y = x^2 + 4x$ o.e.	4
10	(i) $\frac{1}{2} \times (x+1)(2x-3) = 9$ o.e.	M1	for clear algebraic use of $\frac{1}{2}bh$; condone	
	$2x^2 - x - 3 = 18$ or $x^2 - \frac{1}{2}x - \frac{3}{2} = 9$	A1	(x + 1)(2x - 3) = 18 allow x terms uncollected. NB ans $2x^2 - x - 21 = 0$ given	
	(ii) $(2x-7)(x+3)$	B1	NB B0 for formula or comp. sq.	
	-3 and $7/2$ o.e. or ft their factors	B1	if factors seen, allow omission of -3	
	base 4, height 4.5 o.e. cao	B1	B0 if also give $b = -9$, $h = -2$	5

Section B

	-			a 4 44	
11	i	grad AC = $\frac{7-3}{2}$ or 4/2 o.e.[= 2]	M1	not from using $-\frac{1}{2}$	
		so grad AT = $-\frac{1}{2}$	M1	or ft their grad AC [for use of $m_1m_2 = -1$]	
		eqn of AT is $y - 7 = -\frac{1}{2}(x - 3)$	M1	or subst (3, 7) in $y = -\frac{1}{2}x + c$ or in 2 $y + x = 17$; allow ft from their grad of AT, except 2 (may be AC not AT)	
		one correct constructive step towards $x + 2y = 17$ [ans given]	M1	or working back from given line to $y = -\frac{1}{2}x + 8.5$ o.e.	4
	ii	x + 2(2x - 9) = 17	M1	attempt at subst for <i>x</i> or <i>y</i> or elimination	
		5x - 18 = 17 or 5x = 35 o.e. x = 7 and y = 5 [so (7, 5)]	A1 B1	allow $2.5x = 17.5$ etc graphically: allow M2 for both lines correct or showing (7, 5) fits both lines	2
	iii	$(x-1)^{2} + (2x-12)^{2} = 20$ $5x^{2} - 50x + 125[=0]$ (x - 5) ² = 0 equal roots so tangent	M1 M1 A1 B1	subst $2x - 9$ for y [oe for x] rearranging to 0; condone one error showing 5 is root and only root explicit statement of condition needed (may be obtained earlier in part) or showing line is perp. to radius at point of contact	2
		(5, 1)	B1	condone $x = 5, y = 1$	
		<u>or</u>	N/1		
		$y-3 = -\frac{1}{2}(x-1)$ o.e. seen	MI	or if $y = 2x - 9$ is tgt then line through C with gradient $-\frac{1}{2}$ is radius	
		subst or elim. with $y = 2x - 9$ x = 5 (5.1)	MI A1 B1		
		showing (5, 1) on circle	B1	or showing distance between (1, 3) and $(5, 1) = \sqrt{20}$	5

Mark Scheme

		1 for $a = 4$, 1 for $b = 3$, 2 for $c = -9$ or	4	$4(x-3)^2-9$	i	12
4	4	M1 for $27 - 4 \times 3^2$ or $\frac{27}{4} - 3^2 [= -\frac{9}{4}]$				
2	2	1 for each coord [e.g. may start again and use calculus to obtain $x = 3$]	B2	min at $(3, -9)$ or ft from (i)	ii	
	e	attempt at factorising or formula or use	M1	(2x-3)(2x-9)	iii	
3	ivs 3	A1 for 1 correct; accept fractional equivs eg 36/8 and 12/8	A2	x = 1.5 or 4.5 o.e.		
			M1	sketch of quadratic the right way up	iv	
3	ne 3	allow unsimplified shown on graph or in table etc; condone not extending to negative <i>x</i>	A1 B1	crosses <i>x</i> axis at 1.5 and 4.5 or ft crosses <i>y</i> axis at 27		
	in	for correct interim step; allow correct long division of $f(x)$ by $(x - 3)$ to obtain $2x^2 + 5x + 4$ with no remainder	1	$2x^3 + 5x^2 + 4x - 6x^2 - 15x - 12$	i	13
4	4	allow $f(3) = 0$ shown or equivalents for M1 and A1 using formula or completing square	B1 M1 A1	3 is root use of $b^2 - 4ac$ $5^2 - 4 \times 2 \times 4$ or -7 and [negative] implies no real root		
		or inspection eg $(x-2)(2x^25)$	M1	divn of $f(x) + 22$ by $x - 2$ as far as $2r^3 - 4r^2$ used	ii	
		attempt at factorising/quad. formula/ compl. sq.	A1 M1 A1 +A1	$2x^{2} + 3x - 5$ obtained (2x + 5)(x - 1) 1 and -2.5 o.e.		
				or		
		<u>or</u> equivs using $f(x) + 22$	M1 A1	$2 \times 2^{3} - 2^{2} - 11 \times 2 - 12$ 16 - 4 - 22 - 12		
		not just stated	B1 B2	x = 1 is a root obtained by factor thm $x = -2.5$ obtained as root		
5	5					
3	o of 3	must have turning points must have max and min below <i>x</i> axis at intns with axes or in working (indep of cubic shape); ignore other intns	G1 G1 G1	cubic right way up crossing x axis only once (3, 0) and $(0, -12)$ shown	iii	
	oof	or inspection eg $(x - 2)(2x^25)$ attempt at factorising/quad. formula/ compl. sq. <u>or equivs using f(x) + 22</u> not just stated must have turning points must have max and min below <i>x</i> axis at inths with axes or in working (indep of cubic shape); ignore other inths	M1 A1 M1 A1 +A1 H1 B1 B2 G1 G1 G1 G1	divn of $f(x) + 22$ by $x - 2$ as far as $2x^3 - 4x^2$ used $2x^2 + 3x - 5$ obtained (2x + 5)(x - 1) 1 and -2.5 o.e. <u>or</u> $2 \times 2^3 - 2^2 - 11 \times 2 - 12$ 16 - 4 - 22 - 12 x = 1 is a root obtained by factor thm x = -2.5 obtained as root cubic right way up crossing x axis only once (3, 0) and $(0, -12)$ shown	ii	

Mark Scheme 4752 June 2007

1	(i) −√3	1	Accept any exact form	
	(ii) $\frac{5}{3}\pi$	2	accept $\frac{5\pi}{3}$, $1^{\frac{2}{3}\pi}$. M1 π rad = 180° used correctly	3
2	$y' = 6 \times \frac{3}{2} x^{\frac{1}{2}}$ or $9x^{\frac{1}{2}}$ o.e.	2	1 if one error in coeff or power, or extra term	
	$y'' = \frac{9}{2}x^{-\frac{1}{2}}$ o.e.	1	f.t. their y' only if fractional power	
	$\sqrt{36} = 6$ used interim step to obtain $\frac{3}{4}$	M1 A1	f.t. their y" www answer given	5
3	(i) $y = 2f(x)$	2	1 if 'y=' omitted [penalise only once] M1 for $y = kf(y)$ $k > 0$	
	(ii) $y = f(x - 3)$	2	M1 for $y = f(x + 3)$ or $y = f(x - k)$	4
4	(i) 11 27 or ft from their 11 (ii) 20	1 1 2	M1 for $1 \times 2 + 2 \times 3 + 3 \times 4$ soi, or 2,6,12 identified, or for substituting $n = 3$ in	4
5	$\theta = 0.72 \text{ o.e}$	2	M1 for $9 = \frac{1}{2} \times 25 \times \theta$ No marks for using	
	13.6 [cm]	3	degrees unless attempt to convert B2 ft for $10 + 5 \times$ their θ or for 3.6 found or M1 for $s = 5 \theta$ soi	5
6	(i) $\log_a 1 = 0$, $\log_a a = 1$	1+1	NB, if not identified, accept only in this	
	(ii) showing both sides equivalent	3	M1 for correct use of 3^{rd} law and M1 for correct use of 1^{st} or 2^{nd} law. Completion www A1. Condone omission of <i>a</i> .	5
7	(i) curve with increasing gradient any curve through (0, 1) marked	G1 G1	correct shape in both quadrants	
	(ii) 2.73	3	M1 for $x \log 3 = \log 20$ (or $x = \log_3 20$) and M1 for $x = \log 20 \div \log 3$ or B2 for other versions of 2.726833 or B1 for other answer 2.7 to 2.8	5
8	(i) $2(1 - \sin^2 \theta) + 7 \sin \theta = 5$	1	for $\cos^2 \theta + \sin^2 \theta = 1$ o.e. used	
	(ii) $(2 \sin \theta - 1)(\sin \theta - 3)$ $\sin \theta = \frac{1}{2}$ 30° and 150°	M1 DM1 A1 A1	1 st and 3 rd terms in expansion correct f.t. factors B1,B1 for each solution obtained by any valid method, ignore extra solns outside range, 30°, 150° plus extra soln(s) scores 1	5

9	i	$y' = 6x^2 - 18x + 12$	M1	condone one error	
		= 12	M1	subst of $x = 3$ in <u>their</u> y'	
		y = 7 when $x = 3$	B1		
		tgt is $y - 7 = 12 (x - 3)$	M1	f.t. their y and y'	
		verifying (-1, -41) on tgt	A1	or B2 for showing line joining (3, 7) and	
				(-1, -41) has gradient 12	5
	ii	y' = 0 soi	M1	Their y'	
		quadratic with 3 terms	M1	Any valid attempt at solution	
		x = 1 or 2	Al	or A1 for $(1, 3)$ and A1 for $(2, 2)$ marking	
		y = 3 or 2	Al	to benefit of candidate	4
	iii	cubic curve correct orientation	GI		
		touching x- axis only at $(0.2,0)$	C 1		
		max and min correct	GI	I.t.	2
		curve crossing y axis only at -2	GI		3
10	i	970 [m]	4	M3 for attempt at trap rule	
	_		-	$\frac{1}{2} \times 10 \times (28 + 22 + 2[19 + 14 + 11 + 12 + 16])$	
				M2 with 1 error, M1 with 2 errors.	
				Or M3 for 6 correct trapezia, M2 for 4	
				correct trapezia, M1 for 2 correct	4
				trapezia.	
	ii	concave curve or line of traps is	1	Accept suitable sketch	
		above curve		-	
		$(19+14+11+11+12+16) \times 10$	M1	M1 for 3 or more rectangles with values	3
		830 to 880 incl.[m]	A1	from curve.	
	iii	$t = 10, v_{\text{model}} = 19.5$	B1		
		difference = 0.5 compared with 3%			
		of 19 = 0.57	B1f.t.	or $\frac{0.5}{100} \times 100 \approx 2.6$	
				19 19	2
	iv	$28t - \frac{1}{2}t^2 + 0.005t^3$ o.e.	M1	2 terms correct, ignore $+ c$	
		value at 60 [– value at 0]	M1	ft from integrated attempt with 3 terms	
		960	Al		3
11	a1	13		M1 for attained at AD formula ft thair a	1
	all	120	2	d or for $3 + 5 + + 21$	2
	hi	125	2	$a = (-3)^3$	2
		$\frac{123}{1226}$	2	M1 for $\frac{1}{-x}\left(\frac{5}{-x}\right)$	2
		1296		$6^{\circ}(6)$	-
	ii	a = 1/6, r = 5/6 s.o.i.	1+1	If not specified, must be in right order	
		$S = \frac{1}{6} \alpha \beta$	1		2
		$\int_{-\infty}^{\infty} \frac{1-\frac{5}{6}}{1-\frac{5}{6}}$	1		3
	iii	$\left(\frac{5}{2}\right)^{n-1} < 0.006$	M1		
		$(n-1)\log_{10}(\frac{5}{6}) < \log_{10} 0.006$	M1	condone omission of base, but not	
		log ₁₀ 0.006		brackets	
		$n-1 > \frac{1 - 2 \mathcal{B}_{10}}{\log \left(\frac{5}{2}\right)}$	DM1		4
		$\log_{10}\left(\frac{1}{6}\right)$			4
		$n_{\min} = 30$	B1	NB change of sign must come at correct	
		Or		place	
		$\log(1/6) + \log(5/6)^{n-1} < \log 0.001$	MI		
		$(n-1)\log(5/6) < \log(0.001/(1/6))$	MI		

Mark Scheme 4753 June 2007 г

-

-

-

Section A

1 (i) $\frac{1}{2} (1+2x)^{-1/2} \times 2$ = $\frac{1}{\sqrt{1+2x}}$	M1 B1 A1 [3]	chain rule $\frac{1}{2} u^{-1/2}$ or $\frac{1}{2} (1 + 2x)^{-1/2}$ oe, but must resolve $\frac{1}{2} \times 2 = 1$
(ii) $y = \ln(1 - e^{-x})$ $\Rightarrow \frac{dy}{dx} = \frac{1}{1 - e^{-x}} \cdot (-e^{-x})(-1)$ $= \frac{e^{-x}}{1 - e^{-x}}$ $= \frac{1}{e^{x} - 1} *$	M1 B1 A1 E1 [4]	chain rule $\frac{1}{1-e^{-x}} \text{ or } \frac{1}{u} \text{ if substituting } u = 1-e^{-x}$ $\times (-e^{-x})(-1) \text{ or } e^{-x}$ www (may imply $\times e^{x}$ top and bottom)
2 $gf(x) = 1-x $ f gf 1 1 1 1 1 1 1 1 1 1 1 1 1	B1 B1 [3]	intercepts must be labelled line must extend either side of each axis condone no labels, but line must extend to left of <i>y</i> axis
3(i) Differentiating implicitly: $(4y+1)\frac{dy}{dx} = 18x$ $\Rightarrow \frac{dy}{dx} = \frac{18x}{4y+1}$ When $x = 1, y = 2, \frac{dy}{dx} = \frac{18}{9} = 2$	M1 A1 M1 A1cao [4]	$(4y+1)\frac{dy}{dx} = \dots$ allow $4y+1\frac{dy}{dx} = \dots$ condone omitted bracket if intention implied by following line. $4y\frac{dy}{dx}+1$ M1 A0 substituting $x = 1, y = 2$ into their derivative (provided it contains x's and y's). Allow unsupported answers.
(ii) $\frac{dy}{dx} = 0 \text{ when } x = 0$ $\Rightarrow 2y^2 + y = 1$ $\Rightarrow 2y^2 + y - 1 = 0$ $\Rightarrow (2y - 1)(y + 1) = 0$ $\Rightarrow y = \frac{1}{2} \text{ or } y = -1$ So coords are $(0, \frac{1}{2})$ and $(0, -1)$	B1 M1 A1 A1 [4]	x = 0 from their numerator = 0 (must have a denominator) Obtaining correct quadratic and attempt to factorise or use quadratic formula $y = \frac{-1 \pm \sqrt{1-4 \times -2}}{4}$ cao allow unsupported answers provided quadratic is shown

4(i) $T = 25 + ae^{-kt}$. When $t = 0, T = 100$ $\Rightarrow 100 = 25 + ae^{0}$ $\Rightarrow a = 75$ When $t = 3, T = 80$ $\Rightarrow 80 = 25 + 75e^{-3k}$ $\Rightarrow e^{-3k} = 55/75$ $\Rightarrow -3k = \ln(55/75), k = -\ln(55/75)/3$ = 0.1034	M1 A1 M1 M1 A1cao [5]	substituting $t = 0$ and $T = 100$ into their equation (even if this is an incorrect version of the given equation) substituting $t = 3$ and $T = 80$ into (their) equation taking lns correctly at any stage 0.1 or better or $-\frac{1}{3}\ln(\frac{55}{75})$ o.e. if final answer
(ii) (A) $T = 25 + 75e^{-0.1034 \times 5}$ = 69.72 (B) 25°C	M1 A1 B1cao [3]	substituting $t = 5$ into their equation 69.5 to 70.5, condone inaccurate rounding due to value of k .
5 $n = 1, n^2 + 3n + 1 = 5$ prime $n = 2, n^2 + 3n + 1 = 11$ prime $n = 3, n^2 + 3n + 1 = 19$ prime $n = 4, n^2 + 3n + 1 = 29$ prime $n = 5, n^2 + 3n + 1 = 41$ prime $n = 6, n^2 + 3n + 1 = 55$ not prime so statement is false	M1 E1 [2]	One or more trials shown finding a counter-example – must state that it is not prime.
6 (i) $-\pi/2 < \arctan x < \pi/2$ $\Rightarrow -\pi/4 < f(x) < \pi/4$ $\Rightarrow \text{ range is } -\pi/4 \text{ to } \pi/4$	M1 A1cao [2]	$\pi/4 \text{ or } -\pi/4 \text{ or } 45 \text{ seen}$ not \leq
(ii) $y = \frac{1}{2} \arctan x$ $x \leftrightarrow y$ $x = \frac{1}{2} \arctan y$ $\Rightarrow 2x = \arctan y$ $\Rightarrow \tan 2x = y$ $\Rightarrow y = \tan 2x$ $either \frac{dy}{dx} = 2 \sec^2 2x$	M1 A1cao M1	tan(arctan y or x) = y or x derivative of tan is sec ² used
$\frac{dx}{or \ y = \frac{\sin 2x}{\cos 2x} \Rightarrow \frac{dy}{dx} = \frac{2\cos^2 2x + 2\sin^2 2x}{\cos^2 2x}}{= \frac{2}{\cos^2 2x}}$ When $x = 0$, $dy/dx = 2$	M1 A1cao B1 [5]	quotient rule (need not be simplified but mark final answer) www
(iii) So gradient of $y = \frac{1}{2} \arctan x$ is $\frac{1}{2}$.	B1ft [1]	ft their '2', but not 1 or 0 or ∞

7(i) Asymptote when $1 + 2x^3 = 0$ $\Rightarrow 2x^3 = -1$ $\Rightarrow x = -\frac{1}{\sqrt[3]{2}}$ = -0.794	M1 A1 A1cao [3]	oe, condone $\pm \frac{1}{\sqrt[3]{2}}$ if positive root is rejected must be to 3 s.f.
(ii) $\frac{dy}{dx} = \frac{(1+2x^3).2x - x^2.6x^2}{(1+2x^3)^2}$ $= \frac{2x + 4x^4 - 6x^4}{(1+2x^3)^2}$ $= \frac{2x - 2x^4}{(1+2x^3)^2} *$ $\frac{dy}{dx} = 0 \text{ when } 2x(1-x^3) = 0$ $\Rightarrow \qquad x = 0, y = 0$ or $x = 1, y = 1/3$	M1 A1 E1 M1 B1 B1 B1 B1 [8]	Quotient or product rule: $(udv-vdu M0)$ $2x(1+2x^3)^{-1} + x^2(-1)(1+2x^3)^{-2}.6x^2$ allow one slip on derivatives correct expression – condone missing bracket if if intention implied by following line derivative = 0 x = 0 or 1 – allow unsupported answers y = 0 and 1/3 SC–1 for setting denom = 0 or extra solutions (e.g. $x = -1$)
(iii) $A = \int_0^1 \frac{x^2}{1+2x^3} dx$	M1	Correct integral and limits – allow \int_{1}^{0}
either = $\left[\frac{1}{6}\ln(1+2x^3)\right]_0^1$ = $\frac{1}{6}\ln 3^*$	M1 A1 M1 E1	$k \ln(1 + 2x^3)$ k = 1/6 substituting limits dep previous M1 www
or let $u = 1 + 2x^3 \Rightarrow du = 6x^2 dx$ $\Rightarrow A = \int_1^3 \frac{1}{6} \cdot \frac{1}{u} du$ $= \left[\frac{1}{6} \ln u\right]_1^3$ $= \frac{1}{6} \ln 3^*$	M1 A1 M1 E1 [5]	$\frac{1}{6u}$ $\frac{1}{6}\ln u$ substituting correct limits (but must have used substitution) www

Section B

Mark Scheme

8 (i) $x \cos 2x = 0$ when $x = 0$ or $\cos 2x = 0$ $\Rightarrow 2x = \pi/2$ $\Rightarrow x = \frac{1}{4}\pi$ $\Rightarrow P \text{ is } (\pi/4, 0)$	M1 M1 A1 [3]	$\cos 2x = 0$ or $x = \frac{1}{2} \cos^{-1}0$ x = 0.785 or 45 is M1 M1 A0
(ii) $f(-x) = -x \cos(-2x)$ $= -x \cos 2x$ = -f(x) Half turn symmetry about O.	M1 E1 B1 [3]	$-x \cos(-2x)$ = $-x \cos 2x$ Must have two of: rotational, order 2, about O, (half turn = rotational order 2)
(iii) $f'(x) = \cos 2x - 2x \sin 2x$	M1 A1 [2]	product rule
(iv) $f'(x) = 0 \Rightarrow \cos 2x = 2x \sin 2x$ $\Rightarrow 2x \frac{\sin 2x}{\cos 2x} = 1$ $\Rightarrow x \tan 2x = \frac{1}{2} *$	M1 E1 [2]	$\frac{\sin}{\cos} = \tan$ www
(v) $f'(0) = \cos 0 - 2.0.\sin 0 = 1$ $f''(x) = -2 \sin 2x - 2\sin 2x - 4x \cos 2x$ $= -4\sin 2x - 4x \cos 2x$ $\Rightarrow f''(0) = -4\sin 0 - 4.0.\cos 0 = 0$	B1ft M1 A1 E1 [4]	allow ft on (their) product rule expression product rule on (2) $x \sin 2x$ correct expression – mark final expression www
(vi) Let $u = x$, $dv/dx = \cos 2x$ $\Rightarrow v = \frac{1}{2} \sin 2x$ $\int_{0}^{\pi/4} x \cos 2x dx = \left[\frac{1}{2}x \sin 2x\right]_{0}^{\pi/4} - \int_{0}^{\pi/4} \frac{1}{2} \sin 2x dx$ $= \frac{\pi}{8} + \left[\frac{1}{4} \cos 2x\right]_{0}^{\pi/4}$ $= \frac{\pi}{8} - \frac{1}{4}$ Area of region enclosed by curve and x-axis between $x = 0$ and $x = \pi/4$	M1 A1 A1 M1 A1 B1 [6]	Integration by parts with $u = x$, $dv/dx = cos2x$ $\left[\frac{1}{4}cos2x\right]$ - sign consistent with their previous line substituting limits – dep using parts www or graph showing correct area – condone P for $\pi/4$.

Mark Scheme 4754 June 2007

Г

Section A

1 $\sin \theta - 3 \cos \theta = R \sin(\theta - \alpha)$ $= R(\sin \theta \cos \alpha - \cos \theta \sin \alpha)$ $\Rightarrow R \cos \alpha = 1, R \sin \alpha = 3$ $\Rightarrow R^2 = 1^2 + 3^2 = 10 \Rightarrow R = \sqrt{10}$ $\tan \alpha = 3 \Rightarrow \alpha = 71.57^{\circ}$ $\sqrt{10} \sin(\theta - 71.57^{\circ}) = 1$ $\Rightarrow \theta - 71.57^{\circ} = \sin^{-1}(1/\sqrt{10})$ $\theta - 71.57^{\circ} = 18.43^{\circ}, 161.57^{\circ}$ $\Rightarrow \theta = 90^{\circ},$ 233.1°	M1 B1 M1 A1 M1 B1 A1 [7]	equating correct pairs oe ft www cao (71.6° or better) oe ft R, α www and no others in range (MR-1 for radians)
2 Normal vectors are $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	B1 B1	
$\Rightarrow \begin{pmatrix} 2\\3\\4 \end{pmatrix} \begin{pmatrix} 1\\-2\\1 \end{pmatrix} = 2 - 6 + 4 = 0$	M1	
\Rightarrow planes are perpendicular.	E1 [4]	
3 (i) $y = \ln x \Rightarrow x = e^{y}$ $\Rightarrow V = \int_{0}^{2} \pi x^{2} dy$	B1 M1	
$= \int_0^2 \pi (e^y)^2 dy = \int_0^2 \pi e^{2y} dy *$	E1 [3]	
(ii) $\int_0^2 \pi e^{2y} dy = \pi \left[\frac{1}{2} e^{2y} \right]_0^2$ = $\frac{1}{2} \pi (e^4 - 1)$	B1 M1 A1 [3]	^{1/2} e^{2y} substituting limits in $k\pi e^{2y}$ or equivalent, but must be exact and evaluate e^0 as 1.
$4 \qquad x = \frac{1}{t} - 1 \Longrightarrow \frac{1}{t} = x + 1$	M1	Solving for <i>t</i> in terms of <i>x</i> or <i>y</i>
$\Rightarrow t = \frac{1}{x+1}$ $\Rightarrow y = \frac{2 + \frac{1}{x+1}}{1 + \frac{1}{x+1}} = \frac{2x+2+1}{x+1+1} = \frac{2x+3}{x+2}$	A1 M1 E1	Subst their t which must include a fraction, clearing subsidiary fractions/ changing the subject oe www
or $\frac{3+2x}{2+x} = \frac{3+\frac{2-2t}{t}}{2+\frac{1-t}{t}}$ = $\frac{3t+2-2t}{2t+1-t}$ = $\frac{t+2}{t+1} = y$	M1 A1 M1 E1 [4]	substituting for x or y in terms of t clearing subsidiary fractions/changing the subject

5 $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 - \lambda \\ 2 + 2\lambda \\ 1 + 2\lambda \end{pmatrix}$		
$(-1) (3) (z) (-1+3\lambda)$ When $x = -1, 1 - \lambda = -1, \Rightarrow \lambda = 2$ $\Rightarrow y = 2 + 2\lambda = 6,$	M1	Finding λ or μ
$\begin{vmatrix} z = -1 + 3\lambda = 5 \\ \Rightarrow \text{ point lies on first line} \\ \begin{pmatrix} 0 \\ \end{pmatrix} \\ \begin{pmatrix} 1 \\ \end{pmatrix} \\ \Rightarrow \begin{pmatrix} x \\ \end{pmatrix} \\ \begin{pmatrix} \mu \\ \end{pmatrix}$	E1	checking other two coordinates
$\mathbf{r} = \begin{bmatrix} 6\\3 \end{bmatrix} + \mu \begin{bmatrix} 0\\-2 \end{bmatrix} \xrightarrow{\frown} \begin{bmatrix} y\\z \end{bmatrix} = \begin{bmatrix} 6\\3-2\mu \end{bmatrix}$ When $x = -1, \ \mu = -1, \ $		
$\Rightarrow y = 6,$ $z = 3 - 2\mu = 5$ $\Rightarrow \text{ point lies on second line}$	E1	checking other two co-ordinates
Angle between $\begin{pmatrix} -1\\ 2\\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix}$ is θ , where	M1	Finding angle between correct vectors
$\cos\theta = \frac{-1 \times 1 + 2 \times 0 + 3 \times -2}{\sqrt{14}\sqrt{5}}$	M1	use of formula
$= -\frac{7}{\sqrt{70}}$	A1	$\pm \frac{7}{\sqrt{70}}$
$\Rightarrow \theta = 146.8^{\circ}$ \Rightarrow acute angle is 33.2°	A1cao [7]	Final answer must be acute angle
6(i) $A \approx 0.5[\frac{(1.1696 + 1.0655)}{2} + 1.1060]$ = 1.11 (3.5 f)	M1	Correct expression for trapezium rule
1.11 (3 5.1.)	[2]	
(ii) $(1+e^{-x})^{1/2} = 1 + \frac{1}{2}e^{-x} + \frac{\frac{1}{2}\cdot-\frac{1}{2}}{2!}(e^{-x})^2 + \dots$	M1 A1	Binomial expansion with $p = \frac{1}{2}$ Correct coeffs
$\approx 1 + \frac{1}{2}e^{-x} - \frac{1}{8}e^{-2x} *$	E1 [3]	
(iii) $I = \int_{1}^{2} (1 + \frac{1}{2}e^{-x} - \frac{1}{8}e^{-2x})dx$		
$= \left[x - \frac{1}{2}e^{-x} + \frac{1}{16}e^{-2x} \right]_{1}^{2}$	M1	integration
$= (2 - \frac{1}{2}e^{-2} + \frac{1}{16}e^{-4}) - (1 - \frac{1}{2}e^{-1} + \frac{1}{16}e^{-2})$	A1	substituting limits into correct expression
= 1.9335 - 0.8245 = 1.11 (3 s.f.)	A1 [3]	

Section **B**

7 (a) (i) $P_{\text{max}} = \frac{2}{2-1} = 2$	B1	
$P_{\min} = \frac{2}{2+1} = 2/3.$	B1 [2]	
(ii) $P = \frac{2}{2 - \sin t} = 2(2 - \sin t)^{-1}$		
$\Rightarrow \frac{dP}{dt} = -2(2-\sin t)^{-2} - \cos t$ $= \frac{2\cos t}{(2-\sin t)^2}$	M1 B1 A1	chain rule $-1()^{-2}$ soi (or quotient rule M1 numerator
$\frac{1}{2}P^{2}\cos t = \frac{1}{2}\frac{4}{(2-\sin t)^{2}}\cos t$ $= \frac{2\cos t}{2\cos t} = \frac{dP}{dt}$	DM1	A1, denominator A1) attempt to verify
$=\frac{1}{(2-\sin t)^2}=\frac{1}{dt}$	[5]	or by integration as in (b)(ii)
(b)(i) $\frac{1}{P(2P-1)} = \frac{A}{P} + \frac{B}{2P-1}$ = $A(2P-1) + BP$	M1	correct partial fractions
$P(2P-1)$ $\Rightarrow 1 = A(2P-1) + BP$ $P = 0 \Rightarrow 1 = -4 \Rightarrow 4 = -1$	M1	substituting values, equating coeffs or cover up rule
$P = \frac{1}{2} \implies 1 = -A \implies A = -1$ $P = \frac{1}{2} \implies 1 = A \cdot 0 + \frac{1}{2}B \implies B = 2$ So $\frac{1}{2} = -\frac{1}{2} + \frac{2}{2}$	A1 A1	$\begin{array}{l} A = -1 \\ B = 2 \end{array}$
P(2P-1) = P + 2P - 1	[4]	
(ii) $\frac{dP}{dt} = \frac{1}{2}(2P - P^2)\cos t$		
$\Rightarrow \int \frac{1}{2P^2 - P} dP = \int \frac{1}{2} \cos t dt$ $\Rightarrow \int (\frac{2}{2P^2 - 1} - \frac{1}{2}) dP = \int \frac{1}{2} \cos t dt$	M1	separating variables
$\Rightarrow \ln(2P-1) - \ln P = \frac{1}{2}\sin t + c$ When $t = 0, P = 1$ $\Rightarrow \ln 1 - \ln 1 = \frac{1}{2}\sin 0 + c \Rightarrow c = 0$ $\Rightarrow \ln(\frac{2P-1}{P}) = \frac{1}{2}\sin t *$	A1 A1 B1 E1 [5]	ln(2P - 1) - ln P ft their A,B from (i) ^{1/2} sin t finding constant = 0
(iii) $P_{\text{max}} = \frac{1}{2 - e^{1/2}} = 2.847$ $P_{} = -\frac{1}{2} = 0.718$	M1A1	www
$r_{\rm min} = \frac{1}{2 - e^{-1/2}} = 0.718$	M1A1 [4]	www

8 (i) $\frac{dy}{dx} = \frac{10\cos\theta + 10\cos 2\theta}{-10\sin\theta - 10\sin 2\theta}$ $= -\frac{\cos\theta + \cos 2\theta}{\sin\theta + \sin 2\theta} *$ When $\theta = \pi/3$, $\frac{dy}{dx} = -\frac{\cos\pi/3 + \cos 2\pi/3}{\sin\pi/3 + \sin 2\pi/3}$ $= 0 \text{ as } \cos\pi/3 = \frac{1}{2}, \cos 2\pi/3 = -\frac{1}{2}$	M1 E1 B1	$dy/d\theta \neq dx/d\theta$ or solving $\cos\theta + \cos 2\theta = 0$
At $A x = 10 \cos \pi/3 + 5 \cos 2\pi/3$ = $2\frac{1}{2}$ $y = 10 \sin \pi/3 + 5 \sin 2\pi/3 = 15\sqrt{3/2}$	A1 [6]	substituting $\pi/3$ into x or y $2\frac{1}{2}$ $15\sqrt{3}/2$ (condone 13 or better)
(ii) $x^2 + y^2 = (10\cos\theta + 5\cos 2\theta)^2 + (10\sin\theta + 5\sin 2\theta)^2$ = $100\cos^2\theta + 100\cos\theta\cos 2\theta + 25\cos^2 2\theta$ + $100\sin^2\theta + 100\sin\theta\sin 2\theta + 25\sin^2 2\theta$ = $100 + 100\cos(2\theta - \theta) + 25$ = $125 + 100\cos\theta$ *	B1 M1 DM1 E1 [4]	expanding $\cos 2\theta \cos \theta + \sin 2\theta \sin \theta = \cos(2\theta - \theta)$ or substituting for $\sin 2\theta$ and $\cos 2\theta$
(iii) Max $\sqrt{125+100} = 15$ min $\sqrt{125-100} = 5$	B1 B1 [2]	
(iv) $2\cos^2 \theta + 2\cos \theta - 1 = 0$ $\cos \theta = \frac{-2 \pm \sqrt{12}}{4} = \frac{-2 \pm 2\sqrt{3}}{4}$ At B, $\cos \theta = \frac{-1 + \sqrt{3}}{2}$ $OB^2 = 125 + 50(-1 + \sqrt{3}) = 75 + 50\sqrt{3} = 161.6$ $\Rightarrow OB = \sqrt{161.6} = 12.7 (m)$	M1 A1 M1 A1 [4]	quadratic formula or θ =68.53° or 1.20radians, correct root selected or OB=10sin θ +5sin2 θ ft their θ /cos θ oe cao

Paper B Comprehension

1)	M $(a\pi, 2a), \theta = \pi$	B1	
	N $(4a\pi 0) = 4\pi$	B1	
	1 (<i>tun</i> , 0), 0 <i>th</i>	21	
2)	Compare the equations with equations given in text,		
	$x = a\theta - b\sin\theta, v = b\cos\theta$	M1	Seeing <i>a</i> =7, <i>b</i> =0.25
	Wavelength = $2\pi a = 14\pi$ (≈ 44)	A1	
	Height = $2b = 0.5$	B1	
3i)	Wavelength = $20 \rightarrow a = \frac{10}{10} (-3.18)$	B1	
	wavelength = $20 \Rightarrow u = \frac{-(-5.18)}{\pi}$		
	$\text{Height} = 2 \Longrightarrow b = 1$	B1	
ii)	In this case, the ratio is observed to be 12:8 Trough length :	B1	
	Peak length = $\pi a + 2b$: $\pi a - 2b$		
	and this is $(10 + 2 \times 1)$: $(10 - 2 \times 1)$	M1	substituting
	So the curve is consistent with the parametric equations	A1	
4i)	$x = a\theta$, $y = b\cos\theta$ is the sine curve V and		
	$x = a\theta - b\sin\theta$, $y = b\cos\theta$ is the curtate cycloid U.		
	The sine curve is above mid-height for half its wavelength	B1	
	(or equivalent)		
ii)	$d = a\theta \cdot (a\theta \cdot bsin\theta)$	M1	Subtraction
	$a_{-}/2 = h (\pi a) (\pi a) (\pi a) = h$		
	$b = \pi/2, \ a = \left(\frac{1}{2}\right)^{-1} \left(\frac{1}{2} - b\right)^{-1} b$	E1	Using $\theta = \pi/2$
iii)	Because <i>b</i> is small compared to <i>a</i> , the two curves are close	M1	Comparison attempted
	together.	E1	Conclusion
5)	Measurements on the diagram give		measurements/reading
	Wavelength ≈ 3.5 cm, Height ≈ 0.8 cm	B1	
	Wavelength 3.5		
	$\frac{-1}{-1} \approx \frac{-1}{0.8} = 4.375$	M1	ratio
	Since $4.275 < 7$ the wave will have become unstable of 1		_
	Since $4.5/5 \le 7$, the wave will have become unstable and broken	E1	[18]
	UIUKEII.	1	

Mark Scheme 4755 June 2007

Sectio	Section A				
1(i)	$\mathbf{M}^{-1} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$	M1 A1 [2]	Attempt to find determinant		
1(ii)	20 square units	B1 [1]	2 × their determinant		
2	z - (3 - 2j) = 2	B1 B1 B1 [3]	$z \pm (3-2j)$ seen radius = 2 seen Correct use of modulus		
3	$x^{3} - 4 = (x - 1)(Ax^{2} + Bx + C) + D$ $\Rightarrow x^{3} - 4 = Ax^{3} + (B - A)x^{2} + (C - B)x - C + D$ $\Rightarrow A = 1, B = 1, C = 1, D = -3$	M1 B1 B1 B1 [5]	Attempt at equating coefficients or long division (may be implied) For $A = 1$ B1 for each of <i>B</i> , <i>C</i> and <i>D</i>		
4(i)	$ \begin{array}{c} Im \\ 2 \\ \beta^* \\ -2 \\ -2 \\ -1 \\ -2 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	B1 B1 [2]	One for each correctly shown. s.c. B1 if not labelled correctly but position correct		
4(ii)	$\alpha\beta = (1-2j)(-2-j) = -4+3j$	M1 A1 [2]	Attempt to multiply		
4(iii)	$\frac{\alpha+\beta}{\beta} = \frac{(\alpha+\beta)\beta^*}{\beta\beta^*} = \frac{\alpha\beta^*+\beta\beta^*}{\beta\beta^*} = \frac{5j+5}{5} = j+1$	M1 A1 [3]	Appropriate attempt to use conjugate, or other valid method 5 in denominator or correct working consistent with their method All correct		

5	Scheme A $w = 3x \Longrightarrow x = \frac{w}{3}$	B1	Substitution. For substitution $x = 3w$ give B0 but then follow through for a maximum of 3 marks
	$\Rightarrow \left(\frac{w}{3}\right)^3 + 3\left(\frac{w}{3}\right)^2 - 7\left(\frac{w}{3}\right) + 1 = 0$	M1	Substitute into cubic
	$\Rightarrow w^3 + 9w^2 - 63w + 27 = 0$	A3	Correct coefficients consistent with x^3 coefficient, minus 1 each error
	OR	A1 [6]	Correct cubic equation c.a.o.
	Scheme B		
	$\alpha + \beta + \gamma = -3$ $\alpha\beta + \alpha\gamma + \beta\gamma = -7$	M1	Attempt to find sums and products of roots (at least two of three)
	$\alpha \beta \gamma = -1$ Let new roots be <i>k</i> , <i>l</i> , <i>m</i> then	M1	Attempt to use sums and products of
	$k + l + m = 3(\alpha + \beta + \gamma) = -9 = \frac{-B}{A}$ $kl + km + lm = 9(\alpha\beta + \alpha\gamma + \beta\gamma) = -63 = \frac{C}{A}$		roots of original equation to find sums and products of roots in related equation
	$klm = 27\alpha\beta\gamma = -27 = \frac{-D}{A}$	A3	Correct coefficients consistent with x^3 coefficient, minus 1 each error
	$\Rightarrow \omega^3 + 9\omega^2 - 63\omega + 27 = 0$	A1 [6]	Correct cubic equation c.a.o.
6(i)	$\frac{1}{r+2} - \frac{1}{r+3} = \frac{r+3 - (r+2)}{(r+2)(r+3)} = \frac{1}{(r+2)(r+3)}$	M1 A1 [2]	Attempt at common denominator
6(ii)	$\sum_{r=1}^{50} \frac{1}{(r+2)(r+3)} = \sum_{r=1}^{50} \left[\frac{1}{r+2} - \frac{1}{r+3} \right]$	M1	Correct use of part (i) (may be implied)
	$= \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots$	M1,	First two terms in full
	$+\left(\frac{1}{51} - \frac{1}{52}\right) + \left(\frac{1}{52} - \frac{1}{53}\right)$	M1	Last two terms in full (allow in terms of n)
	$=\frac{1}{3}-\frac{1}{53}=\frac{50}{159}$	A1	Give B4 for correct without working Allow 0.314 (3s f)
	5 55 157	[4]	

7	$\sum_{r=1}^{n} 3^{r-1} = \frac{3^{n} - 1}{2}$		
	n = 1, LHS = RHS = 1	B1	
	Assume true for $n = k$	E1	Assuming true for <i>k</i>
	Next term is 3^k	M1	Attempt to add 3^k to RHS
	Add to both sides		-
	$\mathrm{RHS} = \frac{3^k - 1}{2} + 3^k$		
	$=\frac{3^k-1+2\times 3^k}{2}$		
	$=\frac{3\times 3^k-1}{2}$		
	$=\frac{3^{k+1}-1}{2}$	A1	c.a.o. with correct simplification
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$.	E1	Dependent on previous E1 and immediately previous A1
	and so true for all positive integers.	E1	Dependent on B1 and both previous E marks
		[6]	
			Section A Total: 36

Section	n B		
8(i) 8(ii)	$(2, 0), (-2, 0), (0, \frac{-4}{3})$ x = 3, x = -1, x = 1, y = 0	B1 B1 [3] B4 [4]	1 mark for each s.c. B2 for 2, -2, $\frac{-4}{3}$ Minus 1 for each error
8(iii)			
0 (1)	Large positive x, $y \rightarrow 0^+$, approach from above (e.g. consider $x = 100$) Large negative x, $y \rightarrow 0^-$, approach from below (e.g. consider $x = -100$)	B1 B1 M1 [3]	Direction of approach must be clear for each B mark Evidence of method required
8(1V)	4 branches correct Asymptotes correct and labelled Intercepts labelled	B2 B1 B1	Minus 1 each error, min 0
	-2	[4]	

9(i)	x = 1 - 2j	B1	
9(ii)	Complex roots occur in conjugate pairs. A cubic		
. ,	has three roots, so one must be real. Or, valid argument involving graph of a cubic or	E1	
	behaviour for large positive and large negative	LI	
	x.	[1]	
9(iii)			
	Scheme A		
	$(x-1-2j)(x-1+2j) = x^2 - 2x + 5$	M1	Attempt to use factor theorem
	$(x-\alpha)(x^2-2x+5) = x^3 + Ax^2 + Bx + 15$	A1 A1(ft)	Correct factors Correct quadratic(using their factors)
	comparing constant term:	M1	Use of factor involving real root
	$-5\alpha = 15 \Longrightarrow \alpha = -3$	M1	Comparing constant term
	So real root is $x = -3$	A1(ft)	From their quadratic
	$(r+3)(r^2-2r+5)-r^3+4r^2+Br+15$		
	(x + 3)(x - 2x + 3) = x + 1x + 13 $\Rightarrow x^3 + x^2 - x + 15 = x^3 + 4x^2 + 9x + 15$	M1	Expand LHS
	$ \Rightarrow x + x - x + 15 = x + Ax + bx + 15 $ $ \Rightarrow 4 - 1 R - 1 $	MI A1	1 mark for both values
	OR	[9]	
	Scheme B		
	Product of roots $= -15$	M1	
		A1 M1	Attempt to use product of roots
	(1+2j)(1-2j) = 5	A1	Multiplying complex roots
	$\Rightarrow 5\alpha = -15$	A1	
	$\Rightarrow \alpha = -3$	A1	c.a.o.
	Sum of roots = $-A$ $\rightarrow -4 - 1 + 2i + 1 - 2i - 31 \rightarrow 4 - 1$	M1	Attempt to use sum of roots
	\rightarrow $M = 1 + 2j + 1 - 2j - 1 \rightarrow M = 1$	1111	ratempt to use sum of roots
	Substitute root $x = -3$ into cubic	M1	Attempt to substitute, or to use sum
	$(-3)^{5} + (-3)^{2} - 3B + 15 = 0 \Longrightarrow B = -1$		
	A = 1 and $B = -1$	A1	c.a.o.
	OR	[2]	
	Scheme C		
	$\alpha = -3$	6	As scheme A, or other valid method
	$(1+2j)^{3} + A(1+2j)^{2} + B(1+2j) + 15 = 0$	M1	Attempt to substitute root
	$\Rightarrow A(-3+4j) + B(1+2j) + 4 - 2j = 0$	M1	Attempt to equate real and imaginary
	$\Rightarrow -3A + B + 4 = 0 \text{ and } 4A + 2B - 2 = 0$		parts, or equivalent.
	$\Rightarrow A = 1 \text{ and } B = -1$	A1 [9]	c.a.o.
	24		

Section	n B (continued)		
10(i)	$\mathbf{AB} = \begin{pmatrix} 1 & -2 & k \\ 2 & 1 & 2 \\ 0 & -1 & -3k & -2 + 2k \end{pmatrix}$	M1	Attempt to multiply matrices (can be implied)
	$ \begin{pmatrix} 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -8 & 5 \end{pmatrix} $ = $\begin{pmatrix} k-21 & 0 & 0 \\ 0 & k-21 & 0 \\ 0 & 0 & k-21 \end{pmatrix} $		
	<i>n</i> = 21	A1 [2]	
10(ii)	$\mathbf{A}^{-1} = \frac{1}{k - 21} \begin{pmatrix} -5 & -2 + 2k & -4 - k \\ 8 & -1 - 3k & -2 + 2k \\ 1 & -8 & 5 \end{pmatrix}$	M1 M1 A1	Use of B Attempt to use their answer to (i) Correct inverse
	<i>k</i> ≠ 21	A1 [4]	Accept <i>n</i> in place of 21 for full marks
10 (iii)	Scheme A $\frac{1}{-20} \begin{pmatrix} -5 & 0 & -5 \\ 8 & -4 & 0 \\ 1 & -8 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 12 \\ 3 \end{pmatrix} = \frac{1}{-20} \begin{pmatrix} -20 \\ -40 \\ -80 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$	M1 M1	Attempt to use inverse Their inverse with $k = 1$
	x = 1, y = 2, z = 4 OR	A3 [5]	One for each correct (ft)
	Scheme B		
	Attempt to eliminate 2 variables Substitute in their value to attempt to find others x = 1, y = 2, z = 4	M1 M1 A3 [5]	
			s.c. award 2 marks only for $x = 1$, $y = 2$, $z = 4$ with no working
			x = 1, y = 2, z = 4 with no working. Section R Total: 36
			Total: 72
			10uli /2

Mark Scheme 4756 June 2007

1(a)(i)			
		B2 2	Must include a sharp point at O and have infinite gradient at $\theta = \pi$ Give B1 for <i>r</i> increasing from zero for $0 < \theta < \pi$, or decreasing to zero for $-\pi < \theta < 0$
(ii)	Area is $\int \frac{1}{r^2} d\theta = \int \frac{1}{2\pi} \frac{1}{r^2} d\theta = \int \frac{1}{2\pi} \frac{1}{r^2} d\theta$	M1	For integral of $(1 - \cos \theta)^2$
	$\int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \frac{1}{2$	A1	For a correct integral expression including limits (may be implied by later work)
	$= \frac{1}{2}a^{2} \int_{0}^{1} \left(1 - 2\cos\theta + \frac{1}{2}(1 + \cos 2\theta)\right) d\theta$	B1	Using $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$
	$= \frac{1}{2}a^2 \left[\frac{3}{2}\theta - 2\sin\theta + \frac{1}{4}\sin 2\theta \right]^{\frac{1}{2}\pi}$	B1B1 ft	Integrating $a + b\cos\theta$ and $k\cos^2\theta$
	$= \frac{1}{2}a^2(\frac{3}{4}\pi - 2)$	B1	Accept 0.178 a^2
	2 4	6	
(b)	Put $x = 2\sin\theta$	M1	or $x = 2\cos\theta$
	Integral is $\int_{0}^{6^{n}} \frac{1}{\left(4 - 4\sin^{2}\theta\right)^{\frac{3}{2}}} (2\cos\theta) d\theta$	A1	Limits not required
	$= \int_{0}^{\frac{1}{6}\pi} \frac{2\cos\theta}{8\cos^{3}\theta} \mathrm{d}\theta = \int_{0}^{\frac{1}{6}\pi} \frac{1}{4}\sec^{2}\theta \mathrm{d}\theta$		
	$= \left[\frac{1}{4} \tan \theta \right]^{\frac{1}{6}\pi}$	M1	For $\int \sec^2 \theta \mathrm{d}\theta = \tan \theta$
			SR If $x = 2 \tanh u$ is used
	$=\frac{1}{4} \times \frac{1}{\sqrt{3}} = \frac{1}{4\sqrt{3}}$	Al ag 4	M1 for $\frac{1}{4}$ sinh($\frac{1}{2}$ ln 3) A1 for $\frac{1}{4}(\sqrt{3} - \frac{1}{2}) = \frac{1}{2}$ (max 2/4)
(a)(i)	2		$\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + 1$
(C)(I)	$f'(x) = \frac{-2}{\sqrt{1-4x^2}}$	B2	Give B1 for any non-zero real
		2	multiple of this (or for $\frac{-2}{\sin y}$ etc)
(ii)	$f'(x) = -2(1 - 4x^2)^{-\frac{1}{2}}$	M1	Binomial expansion (3 terms, $n = -\frac{1}{2}$)
	$= -2(1 + 2x^2 + 6x^4 + \dots)$	A1	Expansion of $(1-4x^2)^{-\frac{1}{2}}$ correct
	f (x) = $C - 2x - \frac{4}{3}x^3 - \frac{12}{5}x^5 + \dots$	M1	(accept unsimplified form) Integrating series for $f'(x)$
	$f(0) = \frac{1}{2}\pi \implies C = \frac{1}{2}\pi$	A 1	Must obtain a non zoro -5 torre
	$f(x) = \frac{1}{2}\pi - 2x - \frac{1}{3}x^2 - \frac{1}{5}x^2 + \dots$	AI 4	C not required

OR by repeated differentiation Finding $f^{(5)}(x)$	M1	
Evaluating $f^{(5)}(0)$ (= -288)	M1	Must obtain a non-zero value
$f'(x) = -2 - 4x^2 - 12x^4 + \dots$	A1 ft	ft from (c)(i) when B1 given
$f(x) = \frac{1}{2}\pi - 2x - \frac{4}{3}x^3 - \frac{12}{5}x^5 + \dots$	A1	

2 (a)	$(\cos\theta + j\sin\theta)^5$		
	$= c^{5} + 5 jc^{4}s - 10c^{3}s^{2} - 10 jc^{2}s^{3} + 5cs^{4} + js^{5}$	M1	
	Equating imaginary parts	M1	
	$\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$	A1	
	$=5(1-s^2)^2s-10(1-s^2)s^3+s^5$	M1	
	$=5s - 10s^3 + 5s^5 - 10s^3 + 10s^5 + s^5$		
	$=5\sin\theta-20\sin^3\theta+16\sin^5\theta$	A1 ag 5	
(b)(i)	$ -2+2j = \sqrt{8}$, $\arg(-2+2j) = \frac{3}{4}\pi$	B1B1	Accept 2.8; 2.4, 135°
	$r = \sqrt{2}$	B1 ft	(Implies B1 for $\sqrt{8}$)
	$ heta = rac{1}{4}\pi$	B1 ft	One correct (Implies B1 for $\frac{3}{4}\pi$)
	a 11 5	M1	Adding or subtracting $\frac{2}{3}\pi$
	$\theta = \frac{1}{12}\pi, -\frac{1}{12}\pi$	A1	Accept $\theta = \frac{1}{4}\pi + \frac{2}{3}k\pi$, $k = 0, 1, -1$
		6	~ + 3
(ii)	B M A A	B2 2	Give B1 for two of B, C, M in the correct quadrants Give B1 ft for all four points in the correct quadrants
(iii)	$\left w \right = \frac{1}{2}\sqrt{2}$	B1 ft	Accept 0.71
	$\arg w = \frac{1}{2} \left(\frac{1}{4} \pi + \frac{11}{12} \pi \right) = \frac{7}{12} \pi$	B1 2	Accept 1.8
(iv)	$ w^{6} = (\frac{1}{2}\sqrt{2})^{6} = \frac{1}{8}$	M1	Obtaining either modulus or
	$\arg(w^6) = 6 \times \frac{7}{12}\pi = \frac{7}{2}\pi$	A1 ft	Both correct (ft)
	$w^6 = \frac{1}{8} (\cos \frac{7}{2}\pi + j \sin \frac{7}{2}\pi)$		
	$=-\frac{1}{8}j$	A1 3	Allow from $\arg w = \frac{1}{4}\pi$ etc
			SR If B, C interchanged on diagram (ii) B1 (iii) B1 B1 for $-\frac{1}{12}\pi$ (iv) M1A1A1

Mark Scheme

3 (i)	$\det(\mathbf{M} - \lambda \mathbf{I}) = (3 - \lambda)[(3 - \lambda)(-4 - \lambda) - 4]$	M1	Obtaining det($\mathbf{M} - \lambda \mathbf{I}$)
	$-5[5(-4-\lambda)+4]+2[-10-2(3-\lambda)]$	A1	Any correct form
	$= (3 - \lambda)(-16 + \lambda + \lambda^2) - 5(-16 - 5\lambda) + 2(-16 + 2\lambda)$		
	$= -48 + 19\lambda + 2\lambda^{2} - \lambda^{3} + 80 + 25\lambda - 32 + 4\lambda$		
	$= 48\lambda + 2\lambda^2 - \lambda^3$	M1	Simplification
	Characteristic equation is $\lambda^3 - 2\lambda^2 - 48\lambda = 0$	Al ag	
(ii)	$\lambda(\lambda - 8)(\lambda + 6) = 0$		
	Other eigenvalues are $8, -6$	M1 A1	Solving to obtain a non-zero value
	When $\lambda = 8$, $3x + 5y + 2z = 8x$		
	(5x+3y-2z=8y)		
	$2x - 2y - 4z = 8z \tag{1}$	M1	Two independent equations
	$y = x$ and $z = 0$; eigenvector is $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$	M1 A1	Obtaining a non-zero eigenvector
	(0) When $\lambda = -6$, $3r + 5v + 2z = -6r$		$(-5x+5y+2z=8x \ etc \ can \ earn$ M0M1)
	5x + 3y - 2z = -6y	M1	Two independent equations
	$y = -x$, $z = -2x$; eigenvector is $\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$	M1 A1	Obtaining a non-zero eigenvector
(iii)			
(111)	$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & -2 \end{bmatrix}$	B1 ft	B0 if P is clearly singular
	$(1 \ 0 \ 0)^2$		
	$\mathbf{D} = \begin{bmatrix} 0 & 8 & 0 \end{bmatrix}$		
	$\begin{pmatrix} 0 & 0 & -6 \end{pmatrix}$	MI	
	$= \begin{vmatrix} 0 & 64 & 0 \\ 0 & 0 & 0 \end{vmatrix}$	A 1	
	$\begin{pmatrix} 0 & 0 & 36 \end{pmatrix}$	A1 3	when B1 has been earned
(iv)	$\mathbf{M}^3 - 2\mathbf{M}^2 - 48\mathbf{M} = 0$	M1	
	$\mathbf{M}^3 = 2\mathbf{M}^2 + 48\mathbf{M}$		
	$\mathbf{M}^4 = 2\mathbf{M}^3 + 48\mathbf{M}^2$		
	$=2(2\mathbf{M}^2+48\mathbf{M})+48\mathbf{M}^2$	M1	
	$= 52\mathbf{M}^2 + 96\mathbf{M}$	A1	
		3	

4 (a)	$\int_{1}^{1} \frac{1}{\sqrt{2}} dx = \left[\frac{1}{2} \operatorname{arsinh} \frac{3x}{4}\right]^{1}$		M1	For arsinh or for any sinh substitution
	$\int_{0} \sqrt{9x^{2} + 16} [5 4]_{0}$		A1	For $\frac{3}{4}x$ or for $3x = 4\sinh u$
	$=\frac{1}{3}\operatorname{arsinh}\frac{3}{4}$		A1	For $\frac{1}{3}$ or for $\int \frac{1}{3} du$
	$= \frac{1}{3} \ln(\frac{3}{4} + \sqrt{\frac{9}{16} + 1})$		M1	
	$=\frac{1}{3}\ln 2$		A1 5	
	OR	M2		For $\ln(kx + \sqrt{k^2 x^2 +})$
				[Give M1 for $\ln(ax + \sqrt{bx^2 +})$]
	$\left[\frac{1}{3}\ln(3x+\sqrt{9x^2+16})\right]_0^1$	A1A1		or $\frac{1}{3}\ln(x + \sqrt{x^2 + \frac{16}{9}})$
	$=\frac{1}{3}\ln 8 - \frac{1}{3}\ln 4$			
	$=\frac{1}{3}\ln 2$	A1		
(b)(i)	$2\sinh x \cosh x = 2 \times \frac{1}{2} (e^x - e^{-x}) \frac{1}{2} (e^x + e^{-x})$			
	$=\frac{1}{2}(e^{2x}-e^{-2x})$		M1	$(e^{x} - e^{-x})(e^{x} + e^{-x}) = (e^{2x} - e^{-2x})$
	$= \sinh 2x$		A1 2	For completion
(ii)	$\frac{dy}{dx} = 20\sinh x - 6\sinh 2x$ For stationary points,		B1B1	When exponential form used, give B1 for any 2 terms correctly
	$20\sinh x - 12\sinh x \cosh x = 0$ $4\sinh x(5 - 3\cosh x) = 0$ $\sinh x = 0 \text{ or } \cosh x = \frac{5}{3}$		M1	differentiated Solving $\frac{dy}{dx} = 0$ to obtain a value of
	x = 0, y = 17		A1	$\sinh x$, $\cosh x$ or e^x (or $x = 0$ stated)
	$x = (\pm) \ln(\frac{5}{3} + \sqrt{\frac{25}{9} - 1}) = \ln 3$		A1 ag	Correctly obtained
	$y = 10\left(3 + \frac{1}{3}\right) - \frac{3}{2}\left(9 + \frac{1}{9}\right) = \frac{59}{3}$		A1 ag	Correctly obtained
	$x = -\ln 3, y = \frac{59}{3}$		B1 7	<i>The last AIAI ag can be replaced by BIBI ag for a full verification</i>
(iii)	$\left[20\sinh x - \frac{3}{2}\sinh 2x \right]_{-\ln 3}^{\ln 3}$		B1B1	When exponential form used, give B1 for any 2 terms correctly
	$= \left\{ 10\left(3 - \frac{1}{3}\right) - \frac{3}{4}\left(9 - \frac{1}{9}\right) \right\} \times 2$ (80 20)		M1	integrated Exact evaluation of sinh(ln 3) and sinh(2 ln 3)
	$= \left(\frac{33}{3} - \frac{23}{3}\right) \times 2 = 40$		A1 ag	

Mark Scheme

5 (i)	k = -2	B1 B1	Maximum on LH branch and minimum on RH branch Crossing axes correctly
		B1 B1	Two branches with positive gradient Crossing axes correctly
	k = 1 $k = -0.5$	B1 B1 6	Maximum on LH branch and minimum on RH branch Crossing positive <i>y</i> -axis and minimum in first quadrant
(ii)	$y = \frac{(x+k)(x-2k) + 2k^2 + 2k}{x+k}$ = $x - 2k + \frac{2k(k+1)}{x+k}$ Straight line when $2k(k+1) = 0$ k = 0, k = -1	M1 A1 (ag) B1B1 4	Working in either direction For completion
(iii)(A)	Hyperbola	B1 1	
(B)	$\begin{aligned} x &= -k \\ y &= x - 2k \end{aligned}$	B1 B1 2	

Mark Scheme 4757 June 2007

1 (i)	$\mathbf{d}_{K} = \begin{pmatrix} 8 \\ -1 \\ -14 \end{pmatrix} \times \begin{pmatrix} 6 \\ 2 \\ -5 \end{pmatrix} = \begin{pmatrix} 33 \\ -44 \\ 22 \end{pmatrix} \begin{bmatrix} =11 \begin{pmatrix} 3 \\ -4 \\ 2 \end{bmatrix} \end{bmatrix}$ $\mathbf{d}_{L} = \begin{pmatrix} 8 \\ -1 \\ -14 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 15 \\ -20 \\ 10 \end{pmatrix} \begin{bmatrix} =5 \begin{pmatrix} 3 \\ -4 \\ 2 \end{bmatrix} \end{bmatrix}$		M1* A1*	 Finding direction of K or L One direction correct * These marks can be earned anywhere in the question
	Hence <i>K</i> and <i>L</i> are parallel For a point on <i>K</i> , $z = 0$, $x = 3$, $y = 4$ i.e. (3, 4, 0) For a point on <i>L</i> , $z = 0$, $x = 6$, $y = 28$ i.e. (6, 28, 0)		A1 M1*A1* A1*	Correctly shown Finding one point on <i>K</i> or <i>L</i> or $(6, 0, 2)$ or $(0, 8, -2)$ etc Or $(27, 0, 14)$ or $(0, 36, -4)$ etc
	$\begin{bmatrix} \binom{6}{28} - \binom{3}{4} \\ 0 \end{bmatrix} \times \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 24 \\ 0 \end{pmatrix} \times \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 48 \\ -6 \\ -84 \end{pmatrix}$ Distance is $\frac{\sqrt{48^2 + 6^2 + 84^2}}{\sqrt{3^2 + 4^2 + 2^2}} = \frac{\sqrt{9396}}{\sqrt{29}} = 18$		M1 M1 A1 9	For (b – a)× d Correct method for finding distance
	OR $\begin{pmatrix} 6+3\lambda-3\\28-4\lambda-4\\2\lambda \end{pmatrix} \cdot \begin{pmatrix} 3\\-4\\2 \end{pmatrix} = 0$ -87+29 $\lambda = 0, \lambda = 3$ Distance is $\sqrt{12^2 + 12^2 + 6^2} = 18$	M1 M1 A1		For $(\mathbf{b} + \lambda \mathbf{d} - \mathbf{a}) \cdot \mathbf{d} = 0$ Finding λ , and the magnitude
(ii)	Distance from (3, 4, 0) to <i>R</i> is $\left \frac{2 \times 3 + 4 - 0 - 40}{\sqrt{2^2 + 1^2 + 1^2}} \right $ $= \frac{30}{\sqrt{6}} = \frac{30\sqrt{6}}{6} = 5\sqrt{6}$		M1A1 ft A1 ag 3	
(iii)	K, M intersect if $1+5\lambda = 3+3\mu$ (1) $-4-4\lambda = 4-4\mu$ (2) $3\lambda = 2\mu$ (3) Solving (2) and (3): $\lambda = 4$, $\mu = 6$ Check in (1): LHS = $1+20=21$, RHS = $3+18=21$ Hence K, M intersect, at (21, -20, 12) OR M meets P when $8(1+5\lambda) - (-4-4\lambda) - 14(3\lambda) = 20$ M meets Q when $6(1+5\lambda) + 2(-4-4\lambda) - 5(3\lambda) = 26$	M1 A1 A1	M1 A1 ft M1M1 M1A1 A1 7	At least 2 eqns, different parameters Two equations correct Intersection correctly shown <i>Can be awarded after</i> <i>M1A1M1M0M0</i> Intersection of <i>M</i> with both <i>P</i> and <i>Q</i>
	Both equations have solution $\lambda = 4$ Point is on <i>P</i> , <i>Q</i> and <i>M</i> ; hence on <i>K</i> and <i>M</i> M2 Point of intersection is (21, -20, 12)	A1 1/ A1		

M1A1 ft	For evaluating $\mathbf{d}_L \times \mathbf{d}_M$
M1	For $(\mathbf{b} - \mathbf{c}) \cdot (\mathbf{d}_L \times \mathbf{d}_M)$
A1 ft	Numerical expression for distance
AI 5	
	M1A1 ft M1 A1 ft A1 ft 5

2 (i)	$\frac{\partial z}{\partial x} = y^2 - 8xy - 6x^2 + 54x - 36$	B2	Give B1 for 3 terms correct
	$\frac{\partial z}{\partial y} = 2xy - 4x^2$	B1 3	
(ii)	At stationary points, $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$	M1	
	When $x = 0$, $y^2 - 36 = 0$	M1	
	$y = \pm 6$; points (0, 6, 20) and (0, -6, 20)	A1A1	If A0, give A1 for $y = \pm 6$
	When $y = 2x$, $4x^2 - 16x^2 - 6x^2 + 54x - 36 = 0$	M1	
	$-18x^2 + 54x - 36 = 0$	M1A1	or $v - 2$ 4
	$\begin{array}{c} x = 1, \ 2 \\ Points (1, \ 2, \ 5) \text{ and } (2, \ 4, \ 8) \end{array}$	A1	A0 if any extra points given
		8	
(iii)	When $x = 2$, $z = 2y^2 - 16y + 40$		
	\^ 2		
		B1	'Upright' parabola
	8>У	B1	(2, 4, 8) identified as a minimum (in the first quadrant)
	t F		
	When $y = 4$, $z = -2x^3 + 11x^2 - 20x + 20$		
	$\begin{pmatrix} d^2z & 12 & 22 & 2 & 1 \\ \end{pmatrix}$		
	$\left(\frac{1}{dx^2} = -12x + 22 = -2 \text{ when } x = 2\right)$		
		B1	'Negative cubic' curve
	8		
	$\frac{1}{2}$	B1	(2, 4, 8) identified as a stationary point
	The point is a minimum on one section and a	B1	Fully correct (unambiguous minimum and maximum)
	maximum on the other; so it is neither a maximum nor a minimum	B1 6	
(iv)	Require $\frac{\partial z}{\partial x} = -36$ and $\frac{\partial z}{\partial y} = 0$	M1	$\frac{\partial z}{\partial x} = 36$ can earn all M marks
	When $x = 0$, $y^2 - 36 = -36$	M1	
	y = 0; point (0, 0, 20)	A1	
	When $y = 2x$, $4x^2 - 16x^2 - 6x^2 + 54x - 36 = -36$	M1	
	$ \begin{array}{c} -18x^2 + 54x = 0 \\ x = 0, 3 \end{array} $	M1	Solving to obtain x (or y) or
	x = 0 gives $(0, 0, 20)$ same as above	A1	stating 'no roots' if appropriate
	x = 3 gives $(3, 6, -7)$	A1 7	(e.g. when +30 has been usea)

3 (i)	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \left(x - \frac{1}{4x}\right)^2$	M1	
	$= 1 + x^{2} - \frac{1}{2} + \frac{1}{16x^{2}} = x^{2} + \frac{1}{2} + \frac{1}{16x^{2}}$		
	$=\left(x+\frac{1}{4x}\right)^2$	A1	
	Arc length is $\int_{1}^{a} \left(x + \frac{1}{4x} \right) dx$	M1	For $\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
	$= \left[\frac{1}{2}x^2 + \frac{1}{4}\ln x \right]_1^a$	M1	$\int \bigvee (dx)$
	$= \frac{1}{2}a^2 + \frac{1}{4}\ln a - \frac{1}{2}$	A1 ag 5	
(ii)	Curved surface area is $\int 2\pi x ds$	M1	
	$=\int_{1}^{4} 2\pi x \left(x + \frac{1}{4x} \right) \mathrm{d}x$	A1 ft	Any correct integral form (including limits)
	$=2\pi\left[\frac{1}{3}x^3+\frac{1}{4}x\right]_1^4$	M1 A1	for $\frac{1}{3}x^3 + \frac{1}{4}x$
	$=\frac{87\pi}{2} (\approx 137)$	A1 5	
(iii)	$\left(1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)^{\frac{3}{2}} - \left(a + \frac{1}{4a}\right)^3$	B1	any form, in terms of <i>x</i> or <i>a</i>
	$\frac{d^2 y}{dx^2} = \frac{1+\frac{1}{4a^2}}{1+\frac{1}{4a^2}}$	B1	any form, in terms of x or a
	$a\left(a+\frac{1}{4a}\right)^3$ $\left(1,\frac{1}{2}\right)^2$	M1	Formula for ρ or κ
	$= \frac{1}{a + \frac{1}{4a}} = a\left(a + \frac{1}{4a}\right)$	A1 ag	terms of x or a
(*)		5	
(IV)	At $(1, \frac{1}{2}), \ \rho = (\frac{5}{4})^2 = \frac{25}{16}$		
	$\frac{dy}{dx} = 1 - \frac{1}{4} = \frac{3}{4}$, so $\hat{\mathbf{n}} = \begin{pmatrix} -\frac{5}{5} \\ \frac{4}{5} \end{pmatrix}$	MI A1	Correct normal vector (not
	$\mathbf{c} = \begin{pmatrix} 1\\\frac{1}{2} \end{pmatrix} + \frac{25}{16} \begin{pmatrix} -\frac{3}{5}\\\frac{4}{5} \end{pmatrix}$	M1	necessarily unit vector); may be in terms of x OR M2A1 for obtaining equation of normal line at a general point
	Centre of curvature is $\left(\frac{1}{16}, \frac{7}{4}\right)$	A1A1 5	and differentiating partially

(v)	Differentiating partially w.r.t. p	M1 A1	
	$0 = x^{2} - 2p \ln x$ $p = \frac{x^{2}}{2 \ln x} \text{ and } y = \frac{x^{4}}{2 \ln x} - \frac{x^{4}}{4 \ln x}$ $y = \frac{x^{4}}{4 \ln x}$	M1 A1	
	4 In <i>x</i>	4	

4 (i)	By Lagrange's theorem, a proper subgroup has order 2 or 5 A group of prime order is cyclic Hence every proper subgroup is cyclic									M1 A1 M1 A1	4	Using Lagrange (need not be mentioned explicitly) or equivalent For completion		
(ii)	e.g. $2^2 = 2^6$	$2^3 = 2^7 =$	8, 2 = 7,	$2^4 = 3^2$	5,2 3,2	$5^{5} = 1$ $2^{9} = 1$	0, 6, 2	10 = 1	M1 A1		Considering order of an element Identifying an element of order 10 (2, 6, 7, or 8)			
	2 has order 10, hence <i>M</i> is cyclic											A1 A1	4	Fully justified For conclusion (can be awarded after M1A1A0)
(iii)	$\{1, 10\} \\ \{1, 3, 4, 5, 9\}$									B1 B2	3	Ignore {1} and <i>M</i> Deduct 1 mark (from B1B2) for each (proper) subgroup given in excess of 2		
(iv)	E is the identity A, C, G, I are rotations B, D, F, H, J are reflections										B1 M1 A1 A1	4	Considering elements of order 2 (or equivalent) Implied by four of B, D, F, H, J in the same set Give A1 if one element is in the wrong set; or if two elements are interchanged	
(v)	P and M M is abe	are alian	not : , <i>P</i> is	ison s noi	norpl n-ab	hic elia	1					B1 B1	2	Valid reason e.g. <i>M</i> has one element of order 2 <i>P</i> has more than one
(vi)		Α	В	С	D	Е	F	G	Н	Ι	J			
	Order	5	2	5	2	1	2	5	2	5	2	B3	3	Give B2 for 7 correct B1 for 4 correct
(vii)														Ignore { E } and P
) (T				E)	([TT) (г 1	.)	M1		Subgroups of order 2 Using elements of order 2 (allow two errors/omissions)
	{E,B}	}, {	Ξ, D	· }, {	Е,	Г},	{ Ε	, Н	}, {	E,J	}	AIII		given
	{ E , A	, C	, G	, I }								B2 cao	4	Subgroups of order greater than 2 Deduct 1 mark (from B2) for each extra subgroup given

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.7 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0 \end{pmatrix}$	B2 2	Give B1 for two columns correct
(ii)	$\mathbf{P}^{4} = \begin{pmatrix} 0.3366 & 0.3317 & 0 & 0\\ 0.6634 & 0.6683 & 0 & 0\\ 0 & 0 & 0.3366 & 0.3317\\ 0 & 0 & 0.6634 & 0.6683 \end{pmatrix}$	B2	Give B1 for two non-zero elements correct to at least 2dp
	$\mathbf{P}^7 = \begin{pmatrix} 0 & 0 & 0.3334 & 0.3333 \\ 0 & 0 & 0.6666 & 0.6667 \\ 0.3335 & 0.3333 & 0 & 0 \\ 0.6665 & 0.6667 & 0 & 0 \end{pmatrix}$	B2 4	Give B1 for two non-zero elements correct to at least 2dp
(iii)	$\mathbf{P}^{7}\begin{pmatrix}0.4\\0.3\\0.2\\0.1\end{pmatrix} = \begin{pmatrix}0.1000\\0.2000\\0.2334\\0.4666\end{pmatrix} \mathbf{P}(8\text{th letter is C}) = 0.233$	M1 A1 2	Using \mathbf{P}^7 (or \mathbf{P}^8) and initial probs
(iv)	$\begin{array}{r} 0.1000 \times 0.3366 \ + \ 0.2000 \times 0.6683 \\ + \ 0.2334 \times 0.3366 \ + \ 0.4666 \times 0.6683 \\ = 0.558 \end{array}$	M1 M1 A1 ft A1 4	Using probabilities for 8th letter Using diagonal elements from \mathbf{P}^4
(v)(A)	$\mathbf{P}^{n} \begin{pmatrix} 0.4\\ 0.3\\ 0.2\\ 0.1 \end{pmatrix} \approx \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 & 0\\ \frac{2}{3} & \frac{2}{3} & 0 & 0\\ 0 & 0 & \frac{1}{3} & \frac{1}{3}\\ 0 & 0 & \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 0.4\\ 0.3\\ 0.2\\ 0.1 \end{pmatrix} = \begin{pmatrix} 0.2333\\ 0.4667\\ 0.1\\ 0.2 \end{pmatrix}$ $\mathbf{P}((n+1) \text{ th letter is } 4) = 0.233$	M1	Approximating \mathbf{P}^n when <i>n</i> is large and even
(B)	$\mathbf{P}^{n}\begin{pmatrix} 0.4\\ 0.3\\ 0.2\\ 0.1 \end{pmatrix} \approx \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{1}{3}\\ 0 & 0 & \frac{2}{3} & \frac{2}{3}\\ \frac{1}{3} & \frac{1}{3} & 0 & 0\\ \frac{2}{3} & \frac{2}{3} & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} 0.4\\ 0.3\\ 0.2\\ 0.1 \end{pmatrix} = \begin{pmatrix} 0.1\\ 0.2\\ 0.2333\\ 0.4667 \end{pmatrix}$ $\mathbf{P}((n+1) \text{ th letter is } A) = 0.1$	M1 A1	Approximating \mathbf{P}^n when <i>n</i> is large and odd
(111)		4	
	$\mathbf{Q} = \begin{pmatrix} 0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.6 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0.1 \end{pmatrix}$	B1 1	

(vii)	$\mathbf{Q}^n \rightarrow$	(0.1721 0.3105 0.1687	0.1721 0.3105 0.1687	0.1721 0.3105 0.1687	0.1721 0.3105 0.1687		M1		Considering \mathbf{Q}^n for large <i>n</i> OR at least two eqns for equilib probs
		0.3487	0.3487	0.3487	0.3487)		M1		Probabilities from equal columns OR solving to obtain equilib probs
	Probab	oilities ar	re 0.172	, 0.310,	0.169, 0	.349	A2	4	Give A1 for two correct
(viii)	0.3487	× 0.1×0. 0.0035	.1				M1M1 A1	3	Using 0.3487 and 0.1

Post-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \end{pmatrix}$	B2 2	Give B1 for two rows correct
(ii)	$\mathbf{P}^{4} = \begin{pmatrix} 0.3366 & 0.6634 & 0 & 0\\ 0.3317 & 0.6683 & 0 & 0\\ 0 & 0 & 0.3366 & 0.6634\\ 0 & 0 & 0.3317 & 0.6683 \end{pmatrix}$	B2	Give B1 for two non-zero elements correct to at least 2dp
	$\mathbf{P}^{7} = \begin{pmatrix} 0 & 0 & 0.3335 & 0.6665 \\ 0 & 0 & 0.3333 & 0.6667 \\ 0.3334 & 0.6666 & 0 & 0 \\ 0.3333 & 0.6667 & 0 & 0 \end{pmatrix}$	B2 4	Give B1 for two non-zero elements correct to at least 2dp
(iii)	$(0.4 0.3 0.2 0.1) \mathbf{P}^7$	M1	Using \mathbf{P}^7 (or \mathbf{P}^8) and initial probs
	= (0.1000 0.2000 0.2334 0.4666) P(8th letter is C) = 0.233	A1 2	
(iv)	$0.1000 \times 0.3366 + 0.2000 \times 0.6683$	M1 M1A1 ft	Using probabilities for 8th letter
	$+ 0.2334 \times 0.3366 + 0.4666 \times 0.6683$ $= 0.558$	A1 4	Using diagonal elements from P ⁺
(v)(A)	$\mathbf{u} \mathbf{P}^{n} \approx \begin{pmatrix} 0.4 & 0.3 & 0.2 & 0.1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$	M1	Approximating \mathbf{P}^n when <i>n</i> is large and even
	= (0.2333 0.4667 0.1 0.2) P((n + 1) th letter is A) = 0.233		
		Al	
(B)	$\mathbf{u} \mathbf{P}^{n} \approx \begin{pmatrix} 0.4 & 0.3 & 0.2 & 0.1 \end{pmatrix} \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \end{pmatrix}$	M1	Approximating \mathbf{P}^n when <i>n</i> is large and odd
	= (0.1 0.2 0.2333 0.4667) P((n+1) th letter is A) = 0.1	A1 4	
(vi)	$\mathbf{Q} = \begin{pmatrix} 0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.6 & 0 & 0.1 \end{pmatrix}$	B1 1	

(vii)	$\mathbf{Q}^n \rightarrow$	(0.1721 0.1721 0.1721	0.3105 0.3105 0.3105	0.1687 0.1687 0.1687	0.3487 0.3487 0.3487		M1		Considering \mathbf{Q}^n for large <i>n</i> OR at least two eqns for equilib probs
		0.1721	0.3105	0.1687	0.3487)		M1		Probabilities from equal rows OR solving to obtain equilib probs
	Probal	oilities a	re 0.172	, 0.310,	0.169,	0.349	A2	4	Give A1 for two correct
(viii)	0.3487	′×0.1×0 0.0035	.1				M1M1 A1	3	Using 0.3487 and 0.1

Mark Scheme 4758 June 2007

1(i)	$\lambda^{2} + 4\lambda + 29 = 0$	M1	Auxiliary equation	
	$\chi + 4\chi + 2\gamma = 0$	M1	Solve for complex roots	
	$\lambda = -2 \pm 5j$	Al		
	$CF y = e^{-2t} \left(A \cos 5t + B \sin 5t \right)$	F1	CF for their roots (if complex, must be exp/trig form)	
	PI $y = a\cos t + b\sin t$	B1	Correct form for PI	
	$\dot{y} = -a\sin t + b\cos t, \\ \ddot{y} = -a\cos t - b\sin t$	M1	Differentiate twice	
	$-a\cos t - b\sin t + 4(-a\sin t + b\cos t)$			
	$+29(a\cos t + b\sin t) = 3\cos t$	M1	Substitute	
	4b + 28a = 3		Compare coefficients (both sin and	
	-4a + 28b = 0	M1	cos)	
	a = 0.105	M1	Solve for two coefficients	
	b = 0.015	A1	Both	
	$y = e^{-2t} \left(A\cos 5t + B\sin 5t \right) + 0.105\cos t + 0.015\sin t$	F1	GS = PI + CF (with two arbitrary constants)	
				11
(ii)	$t = 0, y = 0 \Longrightarrow 0 = A + 0.105$	M1	Use condition on <i>y</i>	
	$\Rightarrow A = -0.105$	F1		
	$\dot{y} = -2e^{-2t}\left(A\cos 5t + B\sin 5t\right)$	N / 1		
	$+e^{-2t}(-5A\sin 5t + 5B\cos 5t) - 0.105\sin t + 0.015\cos t$	MI	Differentiate (product rule)	
	$t = 0, \dot{y} = 0 \Longrightarrow 0 = -2A + 5B + 0.015$	M1	Use condition on \dot{y}	
	$\Rightarrow B = -0.045$			
	$y = -e^{-2t} \left(0.105 \cos 5t + 0.045 \sin 5t \right) + 0.105 \cos t + 0.015 \sin t$	A1	cao	
	For large t, $y \approx 0.105 \cos t + 0.015 \sin t$	M1	Ignore decaying terms	
	amplitude $\approx \sqrt{0.105^2 + 0.015^2} \approx 0.106$	M1	Calculate amplitude from solution of	
	1 .	Δ1	this form	
		111	cuo	8
(iii)	$y(10\pi) \approx 0.105$	B1	Their <i>a</i> from PI, provided GS of	
	$\dot{v}(10\pi) \approx 0.015$	D 1	Their b from PI, provided GS of	
	(10), 00010	BI	correct form	
				2
(iv)	$y = e^{-2t} \left(C \cos 5t + D \sin 5t \right)$	F1	Correct or follows previous CF	
			Must not use same arbitrary	
	oscillations	B1	constants as before	
	with decaying amplitude (or tends to zero)	B1	Must indicate that <i>y</i> approaches zero,	
			not that $y \approx 0$ for $t > 10\pi$	
				3

2(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{2}{x}y = \frac{1}{x} + x^{n-1}$	M1	Rearrange	
	$I = \exp\left(\int -\frac{2}{x} dx\right)$	M1	Attempt IF	
	$=\exp\left(-2\ln x\right)$	M1	Integrate to get $k \ln x$	
	$=x^{-2}$	A1	Simplified form of IF	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(yx^{-2}\right) = x^{-3} + x^{n-3}$	M1	Multiply both sides by IF and recognise derivative	
	$yx^{-2} = -\frac{1}{2}x^{-2} + \frac{1}{n-2}x^{n-2} + A$	M1 A1	Integrate RHS including constant	
	$y = -\frac{1}{2} + \frac{1}{n-2}x^n + Ax^2$	F1	Their integral (with constant) divided by IF	8
(ii)	From solution, $x \to 0 \Rightarrow y \to -\frac{1}{2}$	B1	Limit consistent with their solution	
	From DE, $x = 0 \Rightarrow 0 - 2y = 1$	M1	Use DE with $x = 0$	
	$\Rightarrow y = -\frac{1}{2}$	E1	Correctly deduced	
				3
(iii)	$y = -\frac{1}{2}, x = 1 \Longrightarrow -\frac{1}{2} = -\frac{1}{2} + \frac{1}{n-2} + A$	M1	Use condition	
	$\Rightarrow A = -\frac{1}{n-2}$			
	$y = -\frac{1}{2} + \frac{1}{n-2} \left(x^n - x^2 \right)$	F1	Consistent with their GS and given condition	
	$n = 1, y = -\frac{1}{2} - x + x^2$			
	у _/	B1	Shape for $x > 0$ consistent with their solution (provided not $y = \text{constant}$)	
	×	B1	Through $\left(1, -\frac{1}{2}\right)$ or (0, their value from (ii))	
	-/2 ¹ (1, -/2)			4
(iv)	$\frac{d}{dx}(yx^{-2}) = x^{-3} + x^{-1}$	M1	Use result from (i) or attempt to solve from scratch	
	da (F1	Follow work in (i)	
	$yx^{-2} = -\frac{1}{2}x^{-2} + \ln x + B$	M1	Integrate	
		A1	RHS (accept repeated error in first term from (i))	
	$y = -\frac{1}{2} + x^2 \ln x + Bx^2$	M1	Divide by IF, including constant (here or later)	
	$y(1) = -\frac{1}{2} + B$	M1	Use condition at $x = 1$	
	$y(2) = -\frac{1}{2} + 4\ln 2 + 4B$	M1	Use condition at $x = 2$	
	$y(1) = y(2) \Longrightarrow 3B = -4 \ln 2 \Longrightarrow B = -\frac{4}{3} \ln 2$	M1	Equate and solve	
	$y = -\frac{1}{2} + x^2 \left(\ln x - \frac{4}{3} \ln 2 \right)$	A1	cao	
				9

3(i)	$\int y^{-\frac{1}{2}} \mathrm{d}y = \int -k \left(1 + 0.1 \cos 25t \right) \mathrm{d}t$	M1	Separate	
	$2v^{\frac{1}{2}} = -k(t+0.004\sin 25t) + c$	M1	Integrate	
		Al Al	LHS RHS (condone no constant)	
	$t = 0, y = 1 \Longrightarrow c = 2$	M1	Use condition (must have constant)	
	2	F1	December 1 - 1's construction idea and the	
	$y = \left(1 - \frac{1}{2}k\left(t + 0.004\sin 25t\right)\right)^2$	A1	cao	
				8
(ii)	$t = 1, y = 0.5 \Longrightarrow 2(0.5)^{\frac{1}{2}} = -k(1+0.004\sin 25)+2$	M1	Substitute	
	$\Rightarrow k \approx 0.586$	E1	Calculate <i>k</i> (must be from correct solution)	
	$t = 2 \Rightarrow y = \left(1 - \frac{1}{2} \times 0.586 \left(2 + 0.004 \sin 50\right)\right)^2 \approx 0.172$	M1	Substitute	
		AI	cao	4
(iii)	solution curve on insert	M1	Reasonable attempt at curve	
		A1	From $(0,1)$ and decreasing	
	toul anote offer 2.0 minutes	Al E1	Curve broadly in line with tangent field	
	tank empty after 5.0 minutes	ГІ	Answei must de consistent with then curve	4
(iv)	x(0.1) = 1 + 0.1(-0.6446)	M1		ł
		A1	-0.6446	
	= 0.93554	E1	Must be clearly shown	
	x(0.2) = 0.93554 + 0.1(-0.51985)	MI	0.51005	
	- 0 99256	AI A1	-U.51985	
	- 0.88550	AI	awrt 0.884	6
(v)	$y < 0.01 \Rightarrow \sqrt{y} < 0.1 \Rightarrow \sqrt{y} + 0.1 \cos 25t < 0$ for	2.6	Consider size of \sqrt{y} and sign of	-
	some t	MI	$\sqrt{y} + 0.1 \cos 25t$	
	$\rightarrow dy$ 0 for some values of t	E1		
	$\Rightarrow \frac{1}{dt} > 0$ for some values of t	EI	Complete argument	_
				2

4(i)	$\ddot{x} = -5\dot{x} + 4\dot{y} - 2e^{-2t}$	M1	Differentiate	
	$= -5\dot{x} + 4\left(-9x + 7y + 3e^{-2t}\right) - 2e^{-2t}$	M1	Substitute for \dot{y}	
	$=-5\dot{x}-36x+\frac{28}{2t}(\dot{x}+5x-e^{-2t})+10e^{-2t}$	M1	y in terms of x, \dot{x}	
		M1	Substitute for <i>y</i>	
	$\ddot{x} - 2\dot{x} + x = 3e^{-2t}$	EI		5
(ii)	$\lambda^2 - 2\lambda + 1 = 0$	M1	Auxiliary equation	5
	$\lambda = 1$ (repeated)	A1		
	$CF \ x = (A + Bt)e^{t}$	F1	CF for their roots	
	PI $x = a e^{-2t}$	B1	Correct form for PI	
	$\dot{x} = -2a \mathrm{e}^{-2t}, \ddot{x} = 4a \mathrm{e}^{-2t}$	M1	Differentiate twice	
	$4a e^{-2t} - 2(-2e^{-2t}) + a e^{-2t} = 3e^{-2t}$	M1	Substitute and compare	
	$a = \frac{1}{3}$	A1		
	GS $x = \frac{1}{3}e^{-2t} + (A + Bt)e^{t}$	F1	GS = PI + CF (with two arbitrary	
			constants)	8
(iii)	$y = \frac{1}{4} (\dot{x} + 5x - e^{-2t})$	M1	v in terms of x, \dot{x}	0
	$= \frac{1}{2} \left(\frac{2}{2} e^{-2t} + \frac{2}{2} e^{t} + \frac{4}{2} e^{t} + \frac{4}{2} e^{t} + \frac{5}{2} e^{-2t} + \frac{5}{2} (\frac{4}{2} + \frac{2}{2} e^{t}) e^{t} - \frac{2}{2} e^{-2t} \right)$	M1	Differentiate <i>x</i>	
	$= \frac{1}{4} \left(-\frac{1}{3} e^{-\frac{1}{3}} e^{-1$	F1	\dot{x} follows their x (but must use	
			product rule)	
	$y = \frac{1}{4} \mathbf{e}^t \left(6A + B + 6Bt \right)$	A1	cao	
	- + · · /			4
(iv)	$\frac{1}{3} + A = 0$	M1	Condition on <i>x</i>	
	$\frac{1}{4}(6A+B) = 0$	M1	Condition on <i>y</i>	
	$A = -\frac{1}{3}, B = 2$			
	$x = \frac{1}{2}e^{-2t} + (2t - \frac{1}{2})e^{t}$			
	$v - 3te^{t}$	A1	Both solutions correct	
	$y = 3x^2$ $t = 0 \Rightarrow \dot{x} = 1, \dot{y} = 3$	B1	Both values correct	
	× / ¥ /			
		B1	x through origin and consistent with their solution for large t (but not	
			linear)	
		B1	y through origin and consistent with their solution for large t (but not	
			linear)	
		B1	Gradient of both curves at origin consistent with their values of \dot{a}	
			consistent with their values of x, y	7
J				'

Mark Scheme 4761 June 2007

Q1				
(i)	$\rightarrow 40 - P\cos 60 = 0$ $P = 80$	M1 A1 A1	For any resolution in an equation involving <i>P</i> . Allow for $P = 40 \cos 60$ or $P = 40 \cos 30$ or $P = 40 \sin 60$ or $P = 40 \sin 30$ Correct equation cao	3
(ii)	$\downarrow Q + P \cos 30 = 120$ $Q = 40(3 - \sqrt{3}) = 50.7179 \text{ so } 50.7 \text{ (3 s.}$ f.)	M1 A1	Resolve vert. All forces present. Allow sin ↔ cos No extra forces. Allow wrong signs. cao	2
				5

Q2				
(i)	Straight lines connecting (0, 10), (10, 30), (25, 40) and (45, 40)	B1 B1 B1	Axes with labels (words or letter). Scales indicated. Accept no arrows. Use of straight line segments and horiz section All correct with salient points clearly indicated	3
(ii)	$0.5(10+30) \times 10 + 0.5(30+40) \times 15 + 40 \times 20$ $= 200 + 525 + 800 = 1525$	M1 M1 A1	Attempt at area(s) or use of appropriate <i>uvast</i> Evidence of attempt to find whole area cao	3
(iii)	$0.5 \times 40 \times T = 1700 - 1525$ so $20T = 175$ and $T = 8.75$	M1 F1	Equating triangle area to 1700 – their (ii) (1700 – their (ii))/20. Do not award for – ve answer.	2
				8

Q3				
(i)	String light and pulley smooth	E1	Accept pulley smooth alone	1
(ii)	5g (49) N thrust	M1 B1 A1	Three forces in equilibrium. Allow sign errors. for 15g (147) N used as a tension 5g (49) N thrust. Accept $\pm 5g$ (49). Ignore diagram. [Award SC2 for $\pm 5g$ (49) N without 'thrust' and SC3 if it is]	3
				4

Q4				
(i)	$P - 800 = 20000 \times 0.2$ P = 4800	M1 A1 A1	N2L. Allow $F = mga$. Allow wrong or zero resistance. No extra forces. Allow sign errors. If done as 1 equn need $m = 20\ 000$. If A and B analysed separately, must have 2 equns with 'T'. N2L correct.	3
(ii)	New accn $4800 - 2800 = 20000a$ a = 0.1	M1 A1	F = ma. Finding new accn. No extra forces. Allow 500 N but not 300 N omitted. Allow sign errors. FT their P	2
(iii)	$T - 2500 = 10000 \times 0.1$ T = 3500 so 3500 N	M1 A1	N2L with new <i>a</i> . Mass 10000. All forces present for A or B except allow 500 N omitted on A. No extra forces cao	2
				7

Q5				
	Take F +ve up the plane F + 40 cos 35 = 100 sin 35	M1	Resolve // plane (or horiz or vert). All forces present. At least one resolved. Allow $sin \leftrightarrow cos$ and $sign$ errors. Allow 100g used.	
		B1	Either $\pm 40\cos 35$ or $\pm 100\sin 35$ or equivalent seen	
	F = 24.5915 so 24.6 N (3 s. f.)	A1	Accept ± 24.5915 or ± 90.1237 even if inconsistent or wrong signs used.	
	up the plane	A1	24.6 N up the plane (specified or from diagram) or equiv all obtained from consistent and correct working.	4
				4

4761

Q6				
(i)	$(-\mathbf{i}+16\mathbf{j}+72\mathbf{k})+(-80\mathbf{k})=8\mathbf{a}$ $\mathbf{a}=\left(-\frac{1}{8}\mathbf{i}+2\mathbf{j}-\mathbf{k}\right)\mathbf{m}\ \mathbf{s}^{-2}$	M1 E1	Use of N2L. All forces present. Need at least the k term clearly derived	2
(ii)	$\mathbf{r} = 4(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}) + 0.5 \times 16\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ $= 3\mathbf{i} + 4\mathbf{k}$	M1 A1 A1	Use of appropriate uvas <i>t</i> or integration (twice) Correct substitution (or limits if integrated)	3
(iii)	$\sqrt{3^2 + 4^2} = 5$ so 5 m	B1	FT their (ii) even if it not a displacement. Allow surd form	1
(iv)	$\arctan \frac{4}{3}$ = 53.130 so 53.1° (3 s. f.)	M1 A1	Accept $\arctan \frac{3}{4}$. FT their (ii) even if not a displacement. Condone sign errors. (May use $\arcsin 4/5$ or equivalent. FT their (ii) and (iii) even if not displacement. Condone sign errors) cao	2
				8

Mark Scheme

Q7				
(i)	8 m s^{-1} (in the negative direction)	B1	Allow \pm and no direction indicated	1
(ii)	(t+2)(t-4) = 0 so $t = -2$ or 4	M1 A1	Equating v to zero and solving or subst If subst used then both must be clearly shown	2
(iii)	a = 2t - 2 a = 0 when $t = 1v(1) = 1 - 2 - 8 = -9$	M1 A1 F1	Differentiating Correct	
	so 9 m s ^{-1} in the negative direction	A1	Accept –9 but not 9 without comment	
	(1,-9)	B1	FT	5
(iv)	$\int_{1}^{4} \left(t^2 - 2t - 8\right) \mathrm{d}x$	M1	Attempt at integration. Ignore limits.	
	$=\left[\frac{t^3}{3}-t^2-8t\right]_1^4$	A1	Correct integration. Ignore limits.	
	$=\left(\frac{64}{3}-16-32\right)-\left(\frac{1}{3}-1-8\right)$	M1	Attempt to sub correct limits and subtract	
	= -18	A1	Limits correctly evaluated. Award if -18 seen	
	distance is 18 m	A1	but no need to evaluate Award even if -18 not seen. Do not award for -18.	
				5
(v)	$2 \times 18 = 36 \text{ m}$	F1	Award for $2 \times$ their (iv).	1
(vi)	$\int_{4}^{5} (t^2 - 2t - 8) dx = \left[\frac{t^3}{3} - t^2 - 8t\right]_{4}^{5}$	M1	\int_{4}^{5} attempted or, otherwise, complete method seen.	
	$= \left(\frac{125}{3} - 25 - 40\right) - \left(-\frac{80}{3}\right) = 3\frac{1}{3}$	A1	Correct substitution	
	so $3\frac{1}{3} + 18 = 21\frac{1}{3}$ m	A1	Award for $3\frac{1}{3}$ + their (positive) (iv)	
				3
				1/

Q8				
(i)	$y = 25\sin\theta t + 0.5 \times (-9.8)t^2$ = $7t - 4.9t^2$	M1 E1	Use of $s = ut + \frac{1}{2}at^2$. Accept sin, cos, 0.96, 0.28, ±9.8, ±10, $u = 25$ and derivation of -4.9 not clear. Shown including deriv of -4.9 . Accept $25 \sin \theta t = 7t$ WW	
	$x = 25\cos\theta t = 25 \times 0.96t = 24t$	B1	Accept $25 \times 0.96t$ or $25 \cos \theta t$ seen WW	3
(ii)	$0 = 7^2 - 19.6s$ s = 2.5 so 2.5 m	M1 A1	Accept sequence of <i>uvast</i> . Accept $u=24$ but not 25. Allow $u \leftrightarrow v$ and ± 9.8 and ± 10 +ve answer obtained by correct manipulation.	2
(iii)	Need $7t - 4.9t^2 = 1.25$ so $4.9t^2 - 7t + 1.25 = 0$	M1 M1	Equate y to their (ii)/2 or equivalent. Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula).	
	t = 0.209209 and $1.219361need 24 \times (1.219 0.209209)$	A1	Both. cao. [Award M1 A1 for two correct roots WW]	
	$= 24 \times 1.01$ so 24.2 m (3 s.f.)	B1	FT their roots (only if both positive)	4
(iv) (A)	$\dot{y} = 7 - 9.8t$ $\dot{y}(1.25) = 7 - 9.8 \times 1.25 = -5.25 \text{ m s}^{-1}$	M1 A1	Attempt at \dot{y} . Accept sign errors and $u = 24$ but not 25	
(B)	Falling as velocity is negative	E1	Reason must be clear. FT their \dot{y} even if not a velocity Could use an argument involving time.	
(C)	Speed is $\sqrt{24^2 + (-5.25)^2}$ = 24.5675 so 24.6 m s ⁻¹ (3 s. f.)	M1 A1	Use of Pythag and 24 or 7 with their \dot{y} cao	5

(v)				
	$y = 7t - 4.9t^2, x = 24t$	M1	Elimination of <i>t</i>	
	so $y = \frac{7x}{24} - 4.9 \left(\frac{x}{24}\right)^2$	A1	Elimination correct. Condone wrong notation with interpretation correct for the problem.	
	$y = \frac{7x}{24} - 4.9 \times \frac{x^2}{576} = \frac{0.7x}{576} (240 - 7x)$	E1	If not wrong accept as long as $24^2 = 576$ seen.	
			Condone wrong notation with interpretation correct for the problem.	
	either			
	Need $y = 0$	M1		
	so $x = 0$ or $\frac{240}{7}$ so $\frac{240}{7}$ m	A1	Accept $x = 0$ not mentioned. Condone $0 \le X \le \frac{240}{7}$.	
	or	B1	Time of flight $\frac{10}{7}$ s	
		B1	Range ${}^{240}\!/_7$ m. Condone $0 \le X \le \frac{240}{7}$.	
				5
				19

Mark Scheme 4762 June 2007

4762

Q 1				
(a) (i)	Impulse has magnitude $2 \times 9 = 18$ N s speed is $\frac{18}{6} = 3$ m s ⁻¹ .	B1 B1		2
(ii)	PCLM \rightarrow 3×6-1×2=8v v = 2 so 2 m s ⁻¹ in orig direction of A	M1 A1 E1	Use of PCLM + combined mass RHS All correct Must justify direction (diag etc)	3
(iii)	$\rightarrow 2 \times 2 - 2 \times -1 = 6$ N s	M1 A1	Attempted use of <i>m</i> v - <i>m</i> u for 6 N s dir specified (accept diag)	2
(iv) (A)	$2 \text{ ms}^{-1} \qquad 1.8 \text{ m s}^{-1}$ $AB \qquad C$ $v \text{ ms}^{-1} \qquad 1.9 \text{ m s}^{-1}$	B1	Accept masses not shown	1
(B)	PCLM \rightarrow 2×8+10×1.8 = 8v+10×1.9 v = 1.875	M1 A1 A1	PCLM. All terms present Allow sign errors only	3
(C)	NEL $\frac{1.9 - 1.875}{1.8 - 2} = -e$ so $e = 0.125$	M1 A1 F1	Use of NEL with their v Any form. FT their v FT their v (only for $0 < e \le 1$)	3
(b)	Using $v^2 = u^2 + 2as$ $v = \sqrt{2 \times 10 \times 9.8} = 14$ rebounds at $14 \times \frac{4}{7}$ $= 8 \text{ m s}^{-1}$ No change to the horizontal component Since both horiz and vert components are 8 m s^{-1} the angle is 45°	B1 M1 F1 B1 A1	Allow ±14 Using their <i>vertical</i> component FT from their 14. Allow ± Need not be explicitly stated cao	5
		19		

Mark Scheme

Q 2				
(i)	$\theta = \frac{\pi}{2}$	B1		
	gives CG = $\frac{8\sin\frac{\pi}{2}}{\frac{\pi}{2}} = \frac{16}{\pi}$	E1		
	$\left(-\frac{16}{\pi}, 8\right)$ justified	E1		3
(ii)	$(8\pi + 72) \left(\frac{\overline{x}}{\overline{y}}\right) = 8\pi \left(-\frac{16}{\pi}\right) + 72 \left(\frac{36}{0}\right)$	M1	Method for c.m.	
	$\left(\frac{\overline{x}}{\overline{x}}\right) = \left(\frac{25.3673}{2.0007}\right) = \left(\frac{25.37}{2.077}\right) (4 \text{ s. f.})$	B1 A1 A1 E1	Correct mass of 8 . or equivalent 1 st RHS term correct 2 nd RHS term correct	
	(y) (2.06997) (2.07)	EI	[If separate cpts award the A1s for <i>x</i> - and <i>y</i> - cpts correct on RHS]	6
(iii)	A (25.37) G (25.37)	B1	General position and angle (lengths need not be shown)	
	$\tan \alpha = \frac{13.93}{25.37}$	M1 M1 A1	Angle or complement attempted. arctan or equivalent. Attempt to get $16 - 2.0699$ Obtaining 13.93 cao	
	<i>q</i> = 28.7700 so 28.8° (3 s. f.)	A1	cao	5
(iv)	c. w. moments about A $12 \times 13.93 - 16F = 0$	M1 A1	[FT use of 2.0699] Moments about any point, all forces present	
	so <i>F</i> = 10.4475	A1	(1.5525 if 2.0699 used)	3
		17		

(i)Moments c.w. about B $200 \times 0.6 - 0.8R_A = 0$ $R_A = 150 \text{ so } 150 \text{ N}$ Resolve or moments $R_B = 50 \text{ so } 50 \text{ N}$ M1 A1 M1 F1Accept about any point. Allow sign errors.(ii)Moments c.w. about D $-0.8R_c + 1.2 \times 200 = 0$ $R_C = 300 \uparrow$ Resolve or moments $R_D = 100 \downarrow$ M11 A1 A1 Resolve or moments R_D = 100 \downarrowOr equiv. Accept about any point. All terms present. No extra terms. Allow sign errors. Neglect direction Both directions clearly shown (on diag)(iii)Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_Q = 0$ M1 A1 A1Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct(iii)Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_Q = 0$ M1 A1Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct(iv)Need one with greatest normal reaction So at PM1 A1Or equive function required but no sign errors in working](iv)Need one with greatest normal reaction So at PB1FT their reactions	
(ii)Moments c.w. about D $-0.8R_{\rm c} + 1.2 \times 200 = 0$ $R_{\rm c} = 300 \uparrow$ M1Or equiv. Accept about any point. All terms present. No extra terms. Allow sign errors. Neglect direction Or equiv. All terms present. No extra terms. Allow sign errors. Neglect direction Both directions clearly shown (on diag)(iii)Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_{\rm Q} = 0$ M1Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Neglect direction Both directions clearly shown (on diag)(iii)Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_{\rm Q} = 0$ M1Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. CorrectR_{\rm Q} = 96 so 96 N resolve perp to plank $R_{\rm p} = 200 \cos \alpha + R_{\rm Q}$ M1Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct(iv)Need one with greatest normal reaction So at PB1FT their reactions(iv)Need one with greatest normal reaction Resolve parallel to the plankB1	4
(iii)Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_Q = 0$ M1Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct $R_Q = 96 \text{ so } 96 \text{ N}$ resolve perp to plank $R_p = 200 \cos \alpha + R_Q$ A1[No direction required but no sign errors in working](iv)Need one with greatest normal reaction So at PB1FT their reactions(iv)Need one with greatest normal reaction So at PB1FT their reactions	5
(iv) Need one with greatest normal reaction So at P B1 FT their reactions	15 S
$F = 200 \sin \alpha$ so $F = 56$ $\mu = \frac{F}{R}$ $= \frac{56}{288} = \frac{7}{36} (= 0.194 (3 \text{ s. f.}))$ B1 M1 Must use their F and R A1 cao	4

Q 4				
(i)	either $0.5 \times 20 \times 0.5^{2} + 20 \times 9.8 \times 4$ = 786.5 J or	M1 B1 B1 A1	KE or GPE terms KE term GPE term cao	
	$a = \frac{1}{32}$ $T - 20g = 20 \times \frac{1}{32}$ T = 196.625 WD is $4T = 786.5$ so 786.5 J	B1 M1 A1 A1	N2L. All terms present.	4
(ii)	$20g \times 0.5 = 10g$ so 98 W	M1 A1 A1	Use of $P = F_V$ or $\Delta WD / \Delta t$ All correct	3
(iii)	GPE lost is $35 \times 9.8 \times 3 = 1029$ J KE gained is $0.5 \times 35 \times (3^2 - 1^2) = 140$ J so WE gives WD against friction is 1029 - 140 = 889 J	B1 M1 A1 M1 A1	ΔKE The 140 J need not be evaluated Use of WE equation cao	5
(iv)	either $0.5 \times 35 \times 3^{2} + 35 \times 9.8 \times 0.1x = 150x$ x = 1.36127 so 1.36 m (3 S. F.) or $35g \times 0.1 - 150 = 35a$ a = -3.3057 0 = 9 - 2ax x = 1.36127 so 1.36 m (3 S. F.)	M1 B1 A1 A1 A1 A1 A1 A1 A1 A1 A1	 WE equation. Allow 1 missing term. No extra terms. One term correct (neglect sign) Another term correct (neglect sign) All correct except allow sign errors cao Use of N2L. Must have attempt at weight component. No extra terms. Allow sign errors, otherwise correct cao Use of appropriate <i>uvast</i> or sequence cao 	5
		17		

Mark Scheme 4763 June 2007

1(a)(i)	$[Velocity] = LT^{-1}$	B1	(Deduct 1 mark if answers given as
	$[Acceleration] = LT^{-2}$	B1	ms^{-1} , ms^{-2} , $kgms^{-2}$ etc)
	$[Force] = M L T^{-2}$	B1	
	$[\text{Density }] = M L^{-3}$	B1	
	$[Pressure] = M L^{-1} T^{-2}$	B1	
		5	
(ii)	$[P] = M L^{-1} T^{-2}$		
	$\left[\frac{1}{2}\rho v^2\right] = (M L^{-3})(L T^{-1})^2$	M1	Finding dimensions of 2nd or 3rd
	$= M L^{-1} T^{-2}$	A1	term
	$[\rho g h] = (M L^{-3})(L T^{-2})(L) = M L^{-1} T^{-2}$	A1	
	All 3 terms have the same dimensions	E1	Allow e.g. 'Equation is
		4	dimensionally consistent'
(b)(i)			
(0)(1)	个 h		
	2.2		
		MI	For a 'cos' curve (starting at the highest point)
	1.6		
		A1 2	Approx correct values marked on
		2	both axes
	03.49 t		
(ii)	$\mathbf{p} \in \mathbb{R}^{2\pi}$ and		
	$\frac{\text{Period}}{\omega} = 3.49$	M1	2π
	$\omega = 1.8$	A1	Accept $\frac{2\pi}{3.49}$
		M1	For $h = c + a \cos/\sin$ with either
	$h = 1.9 + 0.3 \cos 1.8t$	F 1	$c = \frac{1}{2}(1.6 + 2.2)$ or $a = \frac{1}{2}(2.2 - 1.6)$
		4	
(iii)	When $h = 1.7$, float is 0.2 m below centre		
	Acceleration is $\omega^2 x = 1.8^2 \times 0.2$	M1A1	Award M1 if there is at most one
	$= 0.648 \text{ m s}^{-2} \text{ upwards}$	A1 cao	error
		3	
	OR When $h = 1.7$, $\cos 1.8t = -\frac{2}{3}$		
	(1.8t = 2.30, t = 1.28)		
	Acceleration $\ddot{h} = -0.3 \times 1.8^2 \cos 1.8t$ M1		
	$= -0.3 \times 1.8^2 \times (-\frac{2}{3})$ A1		
	$= 0.648 \text{ m s}^{-2} \text{ upwards A1 cao}$		

2 (i)	$R\cos 60 = 0.4 \times 9.8$ Normal reaction is 7.84 N	M1 A1	2	Resolving vertically (e.g. $R \sin 60 = mg$ is M1A0 $R = mg \cos 60$ is M0)
(ii)	$R\sin 60 = 0.4 \times \frac{v^2}{2.7\sin 60}$	M1 M1 A1		Horizontal equation of motion Acceleration $\frac{v^2}{r}$ (M0 for $\frac{v^2}{2.7}$)
	Speed is 6.3 m s^{-1}	A1 cao	4	
	OR $R \sin 60 = 0.4 \times (2.7 \sin 60)\omega^2$ $\omega = 2.694$	1		Horizontal equation of motion or $R = 0.4 \times 2.7 \times \omega^2$
	$v = (2.7 \sin 60)\omega$ M Speed is 6.3 ms^{-1} A1 ca	.0		For $v = r\omega$ (M0 for $v = 2.7\omega$)
(iii)	By conservation of energy, $\frac{1}{2} \times 0.4 \times (9^2 - v^2) = 0.4 \times 9.8 \times (2.7 + 2.7 \cos \theta)$ $81 - v^2 = 52.92 + 52.92 \cos \theta$	M1 A1		Equation involving KE and PE
	$v^2 = 28.08 - 52.92\cos\theta$	A1	3	Any (reasonable) correct form e.g. $v^2 = 81 - 52.92(1 + \cos \theta)$
(iv)	$R + 0.4 \times 9.8 \cos \theta = 0.4 \times \frac{v^2}{2.7}$ $R + 3.92 \cos \theta = \frac{0.4}{2.7} (28.08 - 52.92 \cos \theta)$	M1 A1 M1 A1		Radial equation with 3 terms Substituting expression for v^2
	$R + 3.92\cos\theta = 4.16 - 7.84\cos\theta$ $R = 4.16 - 11.76\cos\theta$	E1	5	SR If θ is taken to the downward vertical, maximum marks are: M1A0A0 in (iii) M1A1M1A1E0 in (iv)
(v)	Leaves surface when $R = 0$	M1		
	$\cos\theta = \frac{4.16}{11.76}$	A1		
	$v^2 = 28.08 - 52.92 \times \frac{4.16}{11.76} (=9.36)$	M1		Dependent on previous M1
	Speed is 3.06 ms^{-1}	A1 cao	4	or using $mg\cos\theta = \frac{mv^2}{r}$

Mark Scheme

3 (i)	Tension is $637 \times 0.1 = 63.7$ N	B1	
	Energy is $\frac{1}{2} \times 637 \times 0.1^2$	M1	
	= 3.185 J	A1	
		3	
(ii)	Let θ be angle between RA and vertical		
	$\cos\theta = \frac{5}{13} (\theta = 67.4^\circ)$	B1	
	$T\cos\theta = mg$	M1	Resolving vertically
	$63.7 \times \frac{5}{13} = m \times 9.8$	A1	
	Mass of ring is 2.5 kg	E1	
		4	
(iii)		M1	Considering PE
	Loss of PE is $2.5 \times 9.8 \times (0.9 - 0.5)$	A1	or PE at start and finish
		M1	Award M1 if not more than one
	EE at lowest point is $\frac{1}{2} \times 637 \times 0.3^2$ (= 28.665)	A1	
	By conservation of energy.	N/1	Equation involving KE DE and EE
	$2.5 \times 9.8 \times 0.4 + \frac{1}{2} \times 2.5u^2 = \frac{1}{2} \times 637 \times 0.3^2 - 3.185$	F1	Equation involving KE, FE and EE
	$98 + 125u^2 = 2548$		
	$u^2 - 12544$		
	u = 12.5 + 1 $u = 3.54$		
		Al cao	
(iv)	From lowest point to level of A		
(17)	Loss of EE is 28.665	M1	EE at 'start' and at level of A
	Gain in PE is $2.5 \times 9.8 \times 0.9 = 22.05$	M1	PE at 'start' and at level of A
		N/1	(For M2 it must be the same 'start')
		M1	Comparing EE and PE (or
	Since 28.665 > 22.05,		$e.g. \frac{1}{2}mu^2 + 3.185 = mg \times 0.5 + \frac{1}{2}mv^2$
	Ring will rise above level of A	A1 cao	Fully correct derivation
		4	
			SR If 637 is used as modulus,
			maximum marks are:
			$\begin{array}{c} (1) \text{BUMIAU} \\ (1) \text{B1M1A1E0} \end{array}$
			(iii) M1A1M1A1M1F1A0
			(iv) M1M1M1A0

4 (a)	Area is $\int_{0}^{2} x^{3} dx = \left[\frac{1}{4}x^{4}\right]_{0}^{2} = 4$	B1	
	$\int x y \mathrm{d}x = \int_0^2 x^4 \mathrm{d}x$	M1	
	$=\left[\frac{1}{5}x^{5}\right]_{0}^{2}=6.4$	A1	
	$\overline{x} = \frac{6.4}{4} = 1.6$	A1	
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_0^2 \frac{1}{2} x^6 \mathrm{d}x$	M1	Condone omission of $\frac{1}{2}$
	$=\left[\frac{1}{14}x^7\right]_0^2 = \frac{64}{7}$	A1	
	$\overline{y} = \frac{\int \frac{1}{2} y^2 \mathrm{d}x}{\int y \mathrm{d}x}$	M1	
	$=\frac{\frac{64}{7}}{4}=\frac{16}{7}$	A1 8	Accept 2.3 from correct working
(b)(i)	Volume is $\int \pi y^2 dx = \int_1^2 \pi (4 - x^2) dx$	M1	π may be omitted throughout
	$= \pi \left[4x - \frac{1}{3}x^3 \right]_1^2 = \frac{5}{3}\pi$	A1	For $\frac{5}{3}$
	$\int \pi x y^2 dx = \int_1^2 \pi x (4 - x^2) dx$	M1	
	$= \pi \left[2x^2 - \frac{1}{4}x^4 \right]_1^2 = \frac{9}{4}\pi$	A1	For $\frac{9}{4}$
	$\overline{x} = \frac{\int \pi x y^2 \mathrm{d}x}{\int \pi y^2 \mathrm{d}x}$	M1	
	$=\frac{\frac{9}{4}\pi}{\frac{5}{3}\pi}=\frac{27}{20}=1.35$	E1 6	Must be fully correct
(ii)	Height of solid is $h = 2\sqrt{3}$	B1 M1	Taking moments
	F = T = 0.101 mg, $R = mg$	F1	
	Least coefficient of friction is $\frac{F}{R} = 0.101$	A1 4	Must be fully correct (e.g. A0 if $m = \frac{5}{3}\pi$ is used)

Mark Scheme 4764 June 2007

1()	DD.	3.61	N 1 ' 1' 1	
1(1)	x = PB	MI	May be implied	
	$x = \sqrt{a^2 + y^2}$	A1		
	$V = \frac{1}{2}kx^2 - mgy$	M1	EPE term	
	2	M1	GPE term	
	$=\frac{1}{2}k\left(a^2+y^2\right)-mgy$	A1	cao	
	2 () .			5
(ii)	dV			5
	$\frac{dv}{dy} = ky - mg$	M1	Differentiate their V	
	dV			
	equilibrium $\Rightarrow \frac{dv}{dv} = 0$	B1	Seen or implied	
	uy ma			
	$\Rightarrow y = \frac{mg}{k}$	A1	cao	
	1 ² 17			
	$\frac{d v}{d^2} = k > 0$	M1	Consider sign of V'' (or V' either side)	
		T 1		
	\Rightarrow stable	EI	Complete argument	5
(iii)	$R - T \sin P\hat{R} A - k \cdot PR \cdot \frac{a}{2}$	M1	Use Hooke's law and resolve	5
	$K = I \sin I DA = K \cdot I D \cdot \frac{PB}{PB}$		Use Hooke's law and resolve	
	$= \kappa a$	AI		2
				2
2(i)	d () 0 constant	M1	Or no external forces \Rightarrow momentum	
	$\frac{dt}{dt}(mv) = 0 \implies mv$ constant	IVI I	conserved, or attempt using δ terms.	
	hence $mv = m_0 u$	A1		
	dm - k	D 1	dm = k seen	
	$\frac{1}{\mathrm{d}t} = \kappa$	DI	$\frac{dt}{dt} = \kappa$ seen	
	$\Rightarrow m = m_0 + kt$	B1	$m_0 + kt$ stated or clearly used as mass	
	$v = \frac{m_0 u}{m_0 u} = \frac{m_0 u}{m_0 u}$		Complete argument (dependent on all	
	$m m_0 + kt$	El	previous marks and $m_0 + kt$ derived, not	
			just stated)	
	$x = \int \frac{m_0 u}{m_0 + kt} dt$	M1	Integrate <i>v</i>	
	$m_0 \pm \kappa \iota$			
	$=\frac{m_0 u}{k} \ln\left(m_0 + kt\right) + A$	A1	cao	
	к т. н			
	$x = 0, t = 0 \Longrightarrow A = -\frac{m_0 a}{k} \ln m_0$	M1	Use condition	
	$m \mu (m + kt)$			
	$x = \frac{m_0 u}{k} \ln \left \frac{m_0 + \kappa t}{m} \right $	A1	cao	
	κ (m_0)			0
(ji)	$y = \frac{1}{2} u \implies m + kt = 2m$	M/1	Attempt to colculate value of m on t	9
(11)	$v - \frac{1}{2}u \rightarrow m_0 + \kappa i - 2m_0$	IV I I	Autempt to calculate value of <i>m</i> of <i>t</i>	
	$\Rightarrow x = \frac{m_0 u}{1} \ln \left(\frac{2m_0}{1} \right)$	M1	Substitute their m or t into x	
	$k (m_0)$			
	$\Rightarrow x = \frac{m_0 u}{\ln 2} \ln 2$	F1	$t = \frac{m_0}{m_0}$ or $m = 2m_0$ in their x	
	k		k	-
1				3
3(i)	$I = \int_{-a}^{a} \rho x^2 \mathrm{d}x$	M1 A1	Set up integral Or equivalent	
-------	---	----------------------------	---	---
	$\rho = \frac{m}{2a}$	M1	Use mass per unit length in integral or I	
	$I = \frac{m}{2a} \left[\frac{1}{3} x^3 \right]_{-a}^a$	M1	Integrate	
	$=\frac{1}{6}ma^2\frac{1}{6}ma^2$	M1	Use limits	
	$\frac{1}{3}ma^2$	E1	Complete argument	6
(ii)	$I_{\rm rod} = \frac{1}{3} \times 1.2 \times 0.4^2 + 1.2 \times 0.4^2$	M1	Use $\frac{1}{3}ma^2$ or $\frac{4}{3}ma^2$	0
	$I_{\text{sphere}} = \frac{2}{5} \times 2 \times 0.1^2 + 2 \times 0.9^2$ $I = I_{\text{rod}} + I_{\text{sphere}} = 1.884$	A1 M1 A1 M1 A1	Rod term(s) all correct Use formula for sphere Use parallel axis theorem Sphere terms all correct Add moment of inertia for rod and sphere cao	7
(iii)	$\frac{1}{2}I\dot{\theta}^2 - 1.2g \times 0.4\cos\theta - 2g \times 0.9\cos\theta$	M1	Use energy	
	$= -1.2g \times 0.4 \cos \alpha - 2g \times 0.9 \cos \alpha$	M1	Reasonable attempt at GPE terms	
		A1	All terms correct (but ignore signs)	
	$\dot{\theta}^2 = \frac{4.56g}{1.884} (\cos\theta - \cos\alpha)$	MI F1	Rearrange Only follow an incorrect <i>I</i>	6
(iv)	$2\dot{a}\ddot{a}\ddot{a}$ 4.56g ($\dot{a}\dot{a}\dot{a}$)			0
	$2\theta \theta = \frac{1}{1.884} \left(-\sin \theta \theta \right)$	M1	Differentiate, or use moment = $I\ddot{\theta}$	
	or $I\ddot{\theta} = -1.2g \times 0.4\sin\theta - 2g \times 0.9\sin\theta$			
		F1	Equation for $\ddot{\theta}$ (only follow their <i>I</i> or $\dot{\theta}^2$)	
	$\sin\theta \approx \theta \Longrightarrow \ddot{\theta} = -11.86\theta$	M1	Use small angle approximation (in terms of θ)	
	i.e. SHM	E1	All correct (for their <i>I</i>) and make conclusion	
	$T \approx \frac{2\pi}{\sqrt{11.86}} \approx 1.82$	F1	$\frac{2\pi}{\text{their }\omega}$	
				С

4(i)	$2v\frac{\mathrm{d}v}{\mathrm{d}r} = 2 - 8v^2$	M1 A1	N2L	
	$\int \frac{v}{1-v^2} \mathrm{d}v = \int \mathrm{d}x$	M1	Separate	
	$-\frac{1}{8}\ln 1-4v^2 = x+c_1$	A1	LHS	
	$x = 0, v = 0 \Longrightarrow c_1 = 0$	M1	Use condition	
	$1 - 4v^2 = e^{-8x}$	M1	Rearrange	
	$v^2 = \frac{1}{4} \left(1 - e^{-8x} \right)$	E1	Complete argument	
				7
(ii)	$F = 2 - 8v^2 = 2 - 2\left(1 - e^{-8x}\right)$	M1	Substitute given v^2 into F	
	$= 2 e^{-8x}$	A1	cao	
	Work done = $\int_0^2 F dx$	M1	Set up integral of F	
	$= \int_0^2 2 \mathrm{e}^{-8x} \mathrm{d}x$	A1	cao	
	$= \left[-\frac{1}{4} e^{-8x} \right]_0^2$	M1	Integrate	
	$=\frac{1}{4}(1-e^{-16})$	Al	Accept $\frac{1}{4}$ or 0.25 from correct working	
()				6
(111)	$2\frac{\mathrm{d}v}{\mathrm{d}t} = 2 - 8v^2$	M1	N2L	
	$\frac{1}{4} \int \frac{1}{\frac{1}{4} - v^2} \mathrm{d}v = \int \mathrm{d}t$	M1	Separate	
	$\frac{1}{4}\ln\left \frac{\frac{1}{2}+\nu}{\frac{1}{2}-\nu}\right = t + c_2$	A1	LHS	
	$t = 0, v = 0 \Longrightarrow c_2 = 0$	M1	Use condition	
	$\frac{\frac{1}{2} + \nu}{\frac{1}{2} - \nu} = e^{4t}$	M1	Rearrange (remove log)	
	$1+2v = \mathrm{e}^{4t} \left(1-2v\right)$			
	$2\nu\left(1+\mathrm{e}^{4t}\right)=\mathrm{e}^{4t}-1$	M1	Rearrange (v in terms of t)	
	$v = \frac{1}{2} \left(\frac{e^{4t} - 1}{e^{4t} + 1} \right) = \frac{1}{2} \left(\frac{1 - e^{-4t}}{1 + e^{-4t}} \right)$	E1	Complete argument	
(11)	$t = 1 \rightarrow y = 0.4820$	D1		7
	$t = 1 \implies v = 0.4920$ $t = 2 \implies v = 0.4997$	B1 B1		
	Impulse = $mv_2 - mv_1$	M1	Use impulse-momentum equation	
	= 0.0353	A1	Accept anything in interval [0.035, 0.036]	4

Mark Scheme 4766 June 2007

Q1 (i)	$\begin{pmatrix} 8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	select = 70			$M1$ for $\begin{pmatrix} 8 \\ \end{pmatrix}$	2	
	(4)					(4)	2
						A1 CAO	
(ii)	4! = 24					B1 CAO	1
						TOTAL	3
Q2							
(i)	Amount	0- <20	20- <50	50-<100	100-<200	B1 for amounts	2
	Frequency	800	480	400	200	B1 for frequencies	-
(ii)	Total \approx 10×800+35	$5 \times 480 + 75$	$5 \times 400 + 15$	$0 \times 200 = \text{\pounds}8$	4800	M1 for their midpoints × their frequencies A1 CAO	2
						TOTAL	4
Q3 (i)	3026						
	Mean = -56	= 54.0				B1 for mean	
	$S_{xx} = 17889$	$0 - \frac{3026^2}{5}$	M1 for attempt at $S_{\rm rr}$				
	56					1	3
	$s = \sqrt{\frac{13378}{55}}$	= 16.7				A1 CAO	
(ii)	$\overline{x} + 2s = 54.0$	$0 + 2 \times 16.7$	= 87.4			M1 for their \overline{x} +2×their s	2
	50 95 IS all ot	uner				comment	2
(iii)	New mean = $N_{ew} = 1.2$	$1.2 \times 54.0 -$	-10 = 54.8			B1 FT M1A1 FT	3
	110 w s = 1.2	× 10.7 – 20	7.1				3
0.1			26 10			TOTAL	8
Q4 (i)	(A) P(at l	east one) =	$\frac{36}{50} = \frac{18}{25} = 1$	0.72		BIaef	
			50 25	a a		M1 for (9+6+5)/50	
	(B) P(exa	ctly one) =	$=\frac{9+6+5}{50}=$	$=\frac{20}{50}=\frac{2}{5}=0$.4	AI aet	3
(ii)			13			M1 for denominator 24	
()	P(not paper a	aluminium	$=\frac{15}{24}$			or 24/50 or 0.48	2
						ALCAU	
(iii)	P(one kitchen	waste) = 2	$\times \frac{18}{32} \times \frac{32}{32}$	$=\frac{576}{-100}=0.4$	470	M1 for both fractions	
	- (50 49	1225		both, or sum of 2 pairs	3
						A1	
						TOTAL	8

4766

Q5 (i)	11 th value is 4,12 th value is 4 so median is 4	B1	
	Interquartile range = $5 - 2 = 3$	M1 for either quartile	•
(**)	No not volid	AI CAU D1	3
(11)	no, not valid any two valid reasons such as :	BI	
	• the sample is only for two years, which may not be		
	representative		
	• the data only refer to the local area not the whole of		
	Britain		
	• even if decreasing it may have nothing to do with global		
	warming		-
	• more days with rain does not imply more total rainfall	E1 E1	3
	• a five year timescale may not be enough to show a long		
	term trend		
		TOTAL	6
Q6 (1)	Either P(all 4 correct) = $\frac{4}{3} \times \frac{3}{2} \times \frac{2}{3} \times \frac{1}{3} = \frac{1}{3}$	M1 for fractions or ^{7}C	2
	7 6 5 4 35	seen	4
	or P(all 4 correct) $-\frac{1}{1}-\frac{1}{1}$		
	of $\Gamma(an + concet) = {}^7C_4 = 35$	A1 NB answer given	
(ii)		M1 for Σrp (at least 3	
	$E(X) = 1 \times \frac{1}{35} + 2 \times \frac{1}{35} + 3 \times \frac{1}{35} + 4 \times \frac{1}{35} = \frac{1}{35} = \frac{2}{7} = 2.29$	terms correct)	
	4 18 12 1 200		
	$E(X^2) = 1 \times \frac{1}{35} + 4 \times \frac{10}{35} + 9 \times \frac{11}{35} + 16 \times \frac{1}{35} = \frac{100}{35} = 5.714$	A1 CAO	
	$(20)^2$ 24	M1 for $\sum r^2 n$ (at least 3	
	$Var(X) = \frac{200}{100} - \left(\frac{80}{100}\right) = \frac{24}{100} = 0.490 \text{ (to 3 s.f.)}$	terms correct)	
	35 (35) 49		
		M1 <i>dep</i> for – their $E(X)^2$	5
		A1 FT their $E(X)$	
		provided $Var(X) > 0$	
		TOTAL	7

	Section B		
Q7 (i)	0.95 Has the disease 0.03 October Positive result 0.05 Clear 0.06 Doubtful result 0.90 Clear 0.91 October Positive result 0.90 Clear 0.99 Clear	G1 probabilities of result G1 probabilities of disease G1 probabilities of clear G1 labels	4
(ii)	$P(\text{negative and clear}) = 0.91 \times 0.99$ $= 0.9009$	M1 for their 0.91×0.99	2
(iii)	$P(\text{has disease}) = 0.03 \times 0.95 + 0.06 \times 0.10 + 0.91 \times 0.01$ $= 0.0285 + 0.006 + 0.0091$ $= 0.0436$	M1 three products M1 <i>dep</i> sum of three products A1 FT their tree	3
(iv)	P(negative has disease) = $\frac{P(negative and has disease)}{P(has disease)} = \frac{0.0091}{0.0436} = 0.2087$	M1 for their 0.01×0.91 or 0.0091 on its own or as numerator M1 <i>indep</i> for their 0.0436 as denominator A1 FT their tree	3
(v)	Thus the test result is not very reliable. A relatively large proportion of people who have the disease will test negative.	E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT	2
(vi)	P(negative or doubtful and declared clear) = $0.91 + 0.06 \times 0.10 \times 0.02 + 0.06 \times 0.90 \times 1$ = $0.91 + 0.00012 + 0.054 = 0.96412$	M1 for their 0.91 + M1 for either triplet M1 for second triplet A1 CAO	4
I		IOINL	-0

Q8	$X \sim B(17, 0.2)$		
(i)	$P(X \ge 4) = 1 - P(X \le 3)$	B1 for 0.5489	
	= 1 - 0.5489 = 0.4511	M1 for 1 – their 0.5489	3
		A1 CAO	
(ii)	$E(X) = np = 17 \times 0.2 = 3.4$	M1 for product	2
		A1 CAO	
(iii)	P(X=2) = 0.3096 - 0.1182 = 0.1914		
	P(X=3) = 0.5489 - 0.3096 = 0.2393	B1 for 0.2393	
	P(X=4) = 0.7582 - 0.5489 = 0.2093	B1 for 0.2093	3
	So 3 applicants is most likely	A1 CAO <i>dep</i> on both	
		B1s	
(iv)	(A) Let $p =$ probability of a randomly selected maths graduate	B1 for definition of p in	
	applicant being successful (for population)	context	
	$H_0: p = 0.2$		
	H ₁ : $p > 0.2$	B1 for H ₀	
	(<i>B</i>) H_1 has this form as the suggestion is that mathematics	B1 for H_1	4
	graduates are more likely to be successful.	E1	
		D1 0 0 1055	
(v)	Let $X \sim B(17, 0.2)$	B1 for 0.1057	
	$P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8943 = 0.1057 > 5\%$	B1 for 0.03//	
	$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9623 = 0.0377 < 5\%$	M1 for at least one	
		comparison with 5%	4
	So critical region is $\{7,8,9,10,11,12,13,14,15,16,17\}$	AI CAO for critical	
		region <i>dep</i> on M1 and at	
		least one B1	
(vi)	Because $P(Y > 6) = 0.1057 > 10\%$	F1	
	Either: comment that 6 is still outside the critical region		2
	Or comparison $P(Y > 7) = 0.0377 < 10\%$	E1	4
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	ΤΟΤΑΙ	18
		IUIAL	10

Mark Scheme 4767 June 2007

(i) (ii)	$X \sim N(11,3^{2})$ $P(X < 10) = P\left(Z < \frac{10 - 11}{3}\right)$ $= P(Z < -0.333)$ $= \Phi(-0.333) = 1 - \Phi(0.333)$ $= 1 - 0.6304 = 0.3696$ $P(3 \text{ of } 8 \text{ less than ten})$	M1 for standardizing M1 for use of tables with their z-value M1 <i>dep</i> for correct tail A1CAO (must include use of differences)	4
	$= \binom{8}{3} \times 0.3696^3 \times 0.6304^5 = 0.2815$	M1 for coefficient M1 for $0.3696^3 \times 0.6304^5$ A1 FT (min 2sf)	3
(iii)	$\mu = np = 100 \times 0.3696 = 36.96$ $\sigma^{2} = npq = 100 \times 0.3696 \times 0.6304 = 23.30$ $Y \sim N(36.96,23.30)$ $P(Y \ge 50) = P\left(Z > \frac{49.5 - 36.96}{\sqrt{23.30}}\right)$ $= P(Z > 2.598) = 1 - \Phi(2.598) = 1 - 0.9953$ = 0.0047	M1 for Normal approximation with correct (FT) parameters B1 for continuity corr. M1 for standardizing and using correct tail A1 CAO (FT 50.5 or omitted CC)	4
(iv)	H ₀ : $\mu = 11$; H ₁ : $\mu > 11$ Where μ denotes the mean time taken by the new hairdresser	B1 for $H_{0,}$ as seen. B1 for $H_{1,}$ as seen. B1 for definition of μ	3
(v)	Test statistic = $\frac{12.34 - 11}{3/\sqrt{25}} = \frac{1.34}{0.6}$ = 2.23 5% level 1 tailed critical value of z = 1.645 2.23 > 1.645, so significant. There is sufficient evidence to reject H ₀ It is reasonable to conclude that the new hairdresser does take longer on average than other staff.	 M1 must include √25 A1 (FT their μ) B1 for 1.645 M1 for sensible comparison leading to a conclusion A1 for conclusion in words in context (FT their μ) 	5
			19

(i)	$\frac{x}{y} = \frac{2.61}{3.2} \frac{2.73}{2.87} \frac{2.96}{2.96} \frac{3.05}{3.05} \frac{3.14}{3.17} \frac{3.24}{3.24} \frac{3.76}{3.76} \frac{4.1}{4.1}$ $\frac{y}{3.2} \frac{2.6}{2.6} \frac{3.5}{3.5} \frac{3.1}{3.1} \frac{2.8}{2.7} \frac{2.7}{3.4} \frac{3.3}{3.3} \frac{4.4}{4.1} \frac{4.1}{1}$ $\frac{1}{\text{Rank } x} \frac{10}{10} \frac{9}{9} \frac{8}{7} \frac{7}{6} \frac{5}{5} \frac{4}{4} \frac{3}{2} \frac{2}{1}$ $\frac{1}{\text{Rank } y} \frac{6}{6} \frac{10}{3} \frac{3}{7} \frac{8}{8} \frac{9}{4} \frac{4}{5} \frac{1}{1} \frac{2}{2}$ $\frac{1}{d} \frac{4}{4} \frac{-1}{5} \frac{5}{0} \frac{-2}{-2} \frac{-4}{4} \frac{0}{-2} \frac{-2}{1} \frac{-1}{-1}$ $\frac{1}{d^2} \frac{16}{16} \frac{1}{25} \frac{25}{0} \frac{4}{4} \frac{16}{0} \frac{0}{4} \frac{4}{1} \frac{1}{1}$ $r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 68}{10 \times 99}$ $= 0.588 \text{ (to 3 s f)} [allow 0.59 \text{ to 2 s f}]$	M1 for ranking (allow all ranks reversed) M1 for d^2 A1 for $\Sigma d^2 = 68$ M1 for method for r_s A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
(ii)	0.500 (10 5 5.1.) [<i>unow</i> 0.57 10 2 5.1.]		
(II)	\mathbf{H} : no association between \mathbf{x} and \mathbf{y}	P1 for U in context	
	H_0 : no association between x and y H_1 : positive association between x and y	B1 for H_0 in context.	
	Looking for positive association (one_tail test): critical	NB H_{2} H_{1} not ito o	
	value at 5% level is 0.5636	RD $\Pi_0 \Pi_1 \underline{\Pi 0}$ for p B1 for ± 0.5636	
	Since 0.588> 0.5636, there is sufficient evidence to reject	M1 for sensible	
	H_0 , i.e. conclude that there is positive association between true weight <i>x</i> and estimated weight <i>y</i> .	comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words & in context, f.t. their r_s and sensible cv	5
(iii)	$\Sigma x = 31.63, \ \Sigma y = 33.1, \ \Sigma x^2 = 101.92, \ \Sigma y^2 = 112.61,$		
	$\Sigma xy = 106.51.$ $S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 106.51 - \frac{1}{10} \times 31.63 \times 33.1$	M1 for method for S_{xy}	
	= 1.8147	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{xx} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 101.92 - \frac{1}{10} \times 31.63^2 = 1.8743$	A1 for at least one of S_{xy} , S_{xx} , S_{yy} correct.	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 112.61 - \frac{1}{10} \times 33.1^2 = 3.049$	M1 for structure of r	5
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{1.8147}{\sqrt{1.8743 \times 3.049}} = 0.759$	A1 (awrt 0.76)	
(iv)	Use of the PMCC is better since it takes into account not just the ranking but the actual value of the weights. Thus it has more information than Spearman's and will therefore provide a more discriminatory test.	E1 for has values, not just ranks E1 for contains more information	
	Critical value for rho = 0.5494 PMCC is very highly significant whereas Spearman's is only just significant.	Allow alternatives. B1 for a cv E1 dep	4
			19

	(A) $P(X=1) = 0.1712 - 0.0408 = 0.1304$	M1 for tables	
(1)	$QR = e^{-3.2} \frac{3.2^1}{1.2} = 0.1304$	A1 (2 s.f. WWW)	
	1!		
	(B) $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8946$	M1	
	= 0.1054	A1	4
(ii)	(A) $\lambda = 3.2 \div 5 = 0.64$	B1 for mean (SOI)	
		M1 for probability	
	$P(X=1) = e^{-0.64} \frac{0.64}{11} = 0.3375$		
		AI	4
	(B) P(exactly one in each of 5 mins) = $0.3375^5 = 0.004379$	B1 (FT to at least 2 s.f.)	
(iii)	Mean no. of calls in 1 hour = $12 \times 3.2 = 38.4$	D1 fee Newsel engine	
	Using Normal approx. to the Poisson,	with correct parameters	
	$X \sim N(38.4, 38.4)$	(SOI)	
	$P(X \in 45.5) = P\left(\frac{7}{2} \in 45.5 - 38.4\right)$	B1 for continuity corr.	4
	$P(X \le 45.5) = P(Z \le \frac{\sqrt{38.4}}{\sqrt{38.4}})$		-
	= $P(Z \le 1.146) = \Phi(1.146) = 0.874 (3 \text{ s.f.})$	M1 for probability using	
		A1 CAO, (but FT 44.5 or	
		omitted CC)	
(iv)	(A) Suitable arguments for/against each assumption:	E1, E1	
	(B) Suitable arguments for/against each assumption:		4
	(b) Sumore arguments for/against each assumption.		-
			16

(i)	H_0 : no a H_1 : som	association be ne association	tween age gr between age	oup and sex; group and s	ex;		B1 (in context)	
	Е	xpected	Se	ex	Row			
		-P	Male	Female	totals	_		
		Under 40	81.84	42.16	124	_		
	Age	40 - 49	73.92	38.08	112			
	0r	50 and over	42.24	21.76	64			
	Colu	mn totals	198	102	300		M1 A1 for expected	
	Contr	ribution to	Se	X			M1 for valid attempt at	
		Stutione	Male	Female			$(O-E)^2/E$	
		Under 40	1.713	3.325				
	Age	40 - 49	0.059	0.114			Nitaep for summation	0
	Broup	50 and over	2.255	4.378				
	$X^2 = 11$.84		·	3		A1CAO for X^2	
	Refer to Critical Result i There is NB if H ₀ Blor fin	$D \equiv 2^{2}$ value at 5% l s significant s some associa $D = H_{1}$ reversed, c al E1	evel = 5.991 ation between or 'correlation	B1 for 2 deg of f B1 CAO for cv B1 dep on their cv & X^2 E1 (conclusion in context)				
(ii)	The analysis suggests that there are more females in the under 40 age group and less in the 50 and over age group than would be expected if there were no association. The reverse is true for males. Thus these data do support the suggestion.					under would	E1 E1 E1dep (on at least one of the previous E1s)	3
(iii)	Binomial(300, 0.03) soi n = 300, p = 0.03 so <i>EITHER:</i> use Poisson approximation to Binomial with $\lambda = np = 9$ Using tables: $P(X \ge 12) = 1 - P(X \le 11)$ = 1 - 0.8030 = 0.197 <i>OR:</i> use Normal approximation N(9, 8.73) $P(X > 11.5) = P\left(Z > \frac{11.5 - 9}{\sqrt{8.73}}\right)$ = P(Z > 0.846)) = 1 - 0.8012 = 0.199					B1 CAO <i>EITHER:</i> B1 for Poisson B1dep for Poisson(9) M1 for using tables to find $1 - P(X \le 11)$ A1 <i>OR:</i> B1 for Normal B1dep for parameters M1 for using tables with correct tail (cc not required for M1) A1	5	
								18

Mark Scheme 4768 June 2007

Q1	$f(t) = kt^3(2-t)$ $0 < t \le 2$			
(i)	$\int_{0}^{2} kt^{3} (2-t) dt = 1$	M1	Integral of $f(t)$, including limits (possibly implied later), equated to 1.	
	$\therefore \left[k \left(\frac{2t^4}{4} - \frac{t^5}{5} \right) \right]_0^2 = 1$			
	$\therefore k \left(8 - \frac{32}{5} \right) - 0 = 1$			
	$\therefore k \times \frac{8}{5} = 1 \qquad \therefore k = \frac{5}{8}$	E1	Convincingly shown. Beware printed answer.	2
(ii)	$\frac{df}{dt} = \frac{5}{8} (6t^2 - 4t^3) = 0$ $\therefore 6t^2 - 4t^3 = 0$	M1	Differentiate and set equal to zero.	
	$\therefore 2t^2(3-2t) = 0$			
	$\therefore t = (0 \text{ or}) \frac{3}{2}$	A1	c.a.o.	2
(iii)	$E(T) = \int_{0}^{2} \frac{5}{8} t^{4} (2-t) dt$	M1	Integral for $E(T)$ including limits (which may appear later).	
	$= \left[\frac{5}{8}\left(\frac{2t^5}{5} - \frac{t^6}{6}\right)\right]_0^2 = \frac{5}{8} \times \left(\frac{64}{5} - \frac{64}{6}\right) = \frac{4}{3}$	A1		
	$E(T^{2}) = \int_{0}^{2} \frac{5}{8} t^{5} (2-t) dt$	M1	Integral for $E(T^2)$ including limits (which may appear later).	
	$= \left[\frac{5}{8} \left(\frac{2t^{6}}{6} - \frac{t^{7}}{7}\right)\right]_{0}^{2} = \frac{5}{8} \times \left(\frac{128}{6} - \frac{128}{7}\right) = \frac{40}{21}$			
	$\operatorname{Var}(T) = \frac{40}{21} - \left(\frac{4}{3}\right)^2 = \frac{120 - 112}{63} = \frac{8}{63}$	M1 A1	Convincingly shown. Beware printed answer.	5
(iv)	$\overline{T} \sim N\left(\frac{4}{3}, \frac{8}{63n}\right)$	B1 B1	Normal distribution. Mean. ft c's $E(T)$.	
		B1	Correct variance.	3

(v)	$n = 100, \bar{t} = \frac{145 \cdot 2}{100} = 1 \cdot 452,$		Both mean and variance	
	$s_{n-1}^{2} = \frac{223 \cdot 41 - 100 \times 1 \cdot 452^{2}}{99} = 0 \cdot 12707$	B1	Accept sd = 0.3565	
	CI is given by $1.452 \pm$	M1	ft c's $\overline{t} \pm .$	
	1.96	B1		
	$\times \frac{0.3565}{\sqrt{100}}$	M1	ft c's s_{n1} .	
	$= 1.452 \pm 0.0698 = (1.382, 1.522)$	A1	c.a.o. Must be expressed as an interval.	
	Since $E(T)$ (= 4/3) lies outside this interval it seems the model may not be appropriate.	E1		6
				18

1				
Q2	$Ca \sim N(60.2, 5.2^{2})$ $Co \sim N(33.9, 6.3^{2})$ $L \sim N(52.4, 4.9^{2})$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$P(Co < 40) = P(Z < \frac{40 - 33 \cdot 9}{6 \cdot 3} = 0.9683)$ $= 0.8336$	M1 A1 A1	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	Want P(L > Ca) i.e. P(L - Ca > 0) $L - Ca \sim N(52.4 - 60.2 = -7.8, 4.9^2 + 5.2^2 = 51.05)$ P(this > 0) = P(Z > $\frac{0 - (-7.8)}{2} = 1.0917)$	M1 B1 B1	Allow $Ca - L$ provided subsequent work is consistent. Mean. Variance. Accept sd = $\sqrt{51.05}$ = 7.1449	
	$\sqrt{51 \cdot 05} = 1 - 0.8625 = 0.1375$	A1	c.a.o.	4
(iii)	Want P(Ca ₁ + Ca ₂ + Ca ₃ + Ca ₄ > 225) Ca ₁ + ~N(60·2 + 60·2 + 60·2 + 60·2 = 240·8, $5 \cdot 2^2 + 5 \cdot 2^2 + 5 \cdot 2^2 = 108 \cdot 16$) P(this > 225) = P(Z > $\frac{225 - 240 \cdot 8}{\sqrt{108 \cdot 16}} = -1.519$)	M1 B1 B1	Mean. Variance. Accept sd=√108·16=10·4.	
	= 0.9356	A1	c.a.o.	
	Must assume that the weeks are independent of each other.	B1		5
(iv)	$R \sim N(0.05 \times 60.2 + 0.1 \times 33.9 + 0.2 \times 52.4 = 16.88,$ $0.05^{2} \times 5.2^{2} + 0.1^{2} \times 6.3^{2} + 0.2^{2} \times 4.9^{2} = 1.4249)$ $20 = 16.88$	M1 A1 M1 M1 A1	Mean. For 0.05^2 etc. For $\times 5.2^2$ etc. Accept sd = $\sqrt{1.4249} = 1.1937$.	
	$P(R > 20) = P(Z > \frac{20 - 10 \cdot 30}{\sqrt{1 \cdot 4249}} = 2.613)$ $= 1 - 0.9955 = 0.0045$	A1	c.a.o.	6
				18

Q3				
(a) (i)	$H_0: \mu_D = 0$ $H_1: \mu_D > 0$	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined.	
	Where μ_D is the (population) mean reduction in absenteeism.	B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " \overline{X} =" or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. Hypotheses in words only must include "population"	
	Must assume Normality of differences.	B1 B1	include population :	4
(ii)	Differences (reductions) (before – after) 1·7, 0·7, 0·6, –1·3, 0·1, –0·9, 0·6, –0·7, 0·4, 2·7, 0·9		Allow "after – before" if consistent with alternatives above.	
	$\overline{x} = 0.4364$, $\overline{s_{n1}} = 1.1518$ ($\overline{s_{n1}}^2 = 1.3265$)	B1	Do not allow $s_n = 1.098 \ (s_n^2 = 1.205).$	
	Test statistic is $\frac{0.4364 - 0}{\left(\frac{1.1518}{\sqrt{11}}\right)}$	M1	Allow c's \overline{x} and/or s_{n1} . Allow alternative: $0 \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}}$ (= -0.6293 , 0.6293) for subsequent comparison with \overline{x} . (Or $\overline{x} \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}}$ (= -0.1929 , 1.0657) for comparison with	
	= 1.256(56)	A1	c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_{10} . Upper 5% point is 1.812.	M1 A1	No ft from here if wrong. No ft from here if wrong. For alternative H_1 expect -1.812 unless it is clear that absolute values are being used.	
	 1.256 < 1.812, ∴ Result is not significant. Seems there has been no reduction in mean absenteeism. 	E1 E1	ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	7

(b)	For "days lost after"			
	$\overline{x} = 4.6182$, $s_{n1} = 1.4851$ ($s_{n1}^2 = 2.2056$)	B1	Do not allow $s_n = 1.4160 (s_n^2 =$	
			2.0051).	
	CI is given by $4.6182 \pm$	M1	ft c's $\overline{x} \pm .$	
	2.228	B1		
	× <u>1 · 4851</u>	M1	ft c's $\tilde{s_{n1}}$.	
	$\sqrt{11}$			
	$= 4.6182 \pm 0.9976 = (3.620(6), 5.615(8))$	A1	c.a.o. Must be expressed as an interval.	
			ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	
	Assume Normality of population of "days lost after".	E1		
	Since 3.5 lies outside the interval it seems that the target has not been achieved.	E1		7
				18

Q4	4								
(i)							_		
	Obs	21	24	12	15	13 9 6			
	Exp	26.53	17.22	20.25	11.00	10.94 8.74 5.32			
	2.10	2000		20 20	M1	Probabilities $\times 100$			
					Δ1	All Expected frequencies correct			
	(21	$2(-52)^2$			ΠΙ	An Expected nequencies contect.			
	$\therefore X^2 = \frac{(21-1)^2}{2}$	$\frac{-20\cdot 33}{-20\cdot 33} + 6$	etc		M1				
	1 1 5 9 7 + 2	26.53	(11 + 1)	1646 1 0 2070					
	= 1.1327 + 2	2.0095 ± 3.3	6 11 + 1·4	1545 + 0.38/9	AI	At least 4 values correct.			
	+0.00//	+ 0.0869			A 1				
	= 9.1203				AI				
	1 6 7 1								
	d.o.f. = 7 - 1	= 6			2.01				
	Refer to χ_6^2				MI	No ft from here if wrong.			
	Upper 5% p	oint is 12.59)		A1	No ft from here if wrong.			
	9.1203 < 12		ult is not s	significant.	E1	ft only c's test statistic.			
	Evidence su	ggests the n	nodel fits	the data at the	E1	ft only c's test statistic.	9		
	5% level								
(ii)									
	Data	Diff = data	-124	Rank of diff	M1	For differences.			
	239	115		9	M1	For ranks of difference.			
	77	-47		3	A1	All correct.			
	179	55		4		ft from here if ranks wrong.			
	221	97		7					
	100	-24		2					
	312	188		10					
	52			5					
	129	5		l					
	236	112		8					
	42	-82		0					
	W = 2 + 2 +	5 + 6 - 16			D1	$O_{r}W = 0 + 4 + 7 + 10 + 1 + 8 - 2$	0		
	$W_{-} = 3 + 2 + 2$	-3 + 0 - 10			DI	$01 W_{+} - 9 + 4 + 7 + 10 + 1 + 8 - 3$	1		
	Defer to Wil	aavan sinal	la commla	(maired)	M1	No ft from horo if wrong			
	tables for n	– 10	le sample	(/paned)	111	No it from here if wrong.			
	Lables 101 n -	-10.	ntic		M1 A 1	Or if 20 used upper point is 45			
	Lower two-t	an 10% poi	IIIL IS	0	MIAI	No. ft from here if umong			
	16 10 1)	10 	U.	E1	0 = 20 < 45			
	10 ≥ 10 ∴ 1	xesuit is not	i significa	Int.	EI	0139×43 .			
	Sooma than	ic no ovida	noo o <i>c</i> oi	at the medice	E1	ft only o's test statistic.	0		
	Seems there	15 HO eVIDE	nce again	si ine median	EI	it only c's test statistic.	9		
	length be	mg 124.							
							10		
1							18		

Mark Scheme 4769 June 2007

1)	$f(x) = \frac{1}{\theta}$ $0 \le x \le \theta$			
(i)	$E[X] = \frac{\theta}{2}$	B1	Write-down, or by symmetry, or by integration.	
	$E[2\overline{X}] = 2E[\overline{X}] = 2E[X]$	M1		
	$= \theta$	A1		
	: unbiased	EI		4
(ii)	$\sum x = 2.3$ $\therefore \bar{x} = \frac{2.3}{5} = 0.46$ $\therefore 2\bar{x} = 0.92$	B1		
	But we know $\theta \ge 1$	E1		
	\therefore estimator can give nonsense answers,	E2	(E1, E1)	
(;;;)	i.e. essentially useless			4
(111)	$Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} \qquad 0 \le y \le \theta$			
	$MSE (kY) = E[(kY - \theta)^2] =$	M1		
	$\mathbb{E}[k^2Y^2 - 2k\theta Y + \theta^2] =$			
	$k^2 \mathbb{E}[Y^2] - 2k\theta \mathbb{E}[Y] + \theta^2$	1	BEWARE PRINTED ANSWER	
	dMSE	M1		
	$\frac{dk}{dk} =$			
	$2k \mathbb{E}[Y^2] - 2\theta \mathbb{E}[Y] = 0$	M1		
	$\theta E[Y]$	A1		
	for $k = \frac{1}{\mathrm{E}[Y^2]}$			
	$\frac{d^2 \text{MSE}}{dk^2} = 2\text{E}[Y^2] > 0 \therefore \text{ this is a minimum}$	M1		
	$F[Y] = \int_{0}^{\theta} \frac{ny^{n}}{n^{n}} dy = \frac{n}{n} \frac{\theta^{n+1}}{\theta^{n+1}} = \frac{n\theta}{n^{n+1}}$	M1		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AI		
	$\mathbf{E}[Y^2] = \int_{0}^{\theta} \frac{ny^{n+1}}{2\pi} dy = \frac{n}{2\pi} \frac{\theta^{n+2}}{2\pi} = \frac{n\theta^2}{2\pi}$	M1 A1		
	\therefore minimising $k = \theta \frac{n\theta}{n+2} \frac{n+2}{n+2} = \frac{n+2}{n+2}$	M1		
	$n+1$ $n\theta^2$ $n+1$	AI		12
(iv)	With this k , kY is always greater than the sample	E2	(E1 E1)	
	maximum	F 2		
	So it does not suffer from the disadvantage in part (ii)	E2	(E1 E1)	4
L	Pmi (11)	1	1	

2(i)	$G(t) = E[t^{X}] = \sum_{n=1}^{n} {n \choose n} (pt)^{x} (1-p)^{n-x}$	M1		
	$= [(1 - n) + nt]^{n}$	2	Available as B2 for write-down or	
	= [(1 p) + pt]		as 1+1 for algebra	
	$=(q+pt)^n$	1		4
(11)	$\mu = G'(1)$ $G'(t) = np(q + pt)^{n-1}$	1		
	$G'(1) = np \times 1 = np$	1		
	$\sigma^2 = G''(1) + \mu - \mu^2$	1		
	$G''(t) = n(n-1)p^2(q+pt)^{n-2}$	-		
	$G''(1) = n(n-1)p^2$	1		
	$\therefore \sigma^2 = n^2 p^2 - np^2 + np - n^2 p^2$	M1		
	$=-np^{2}+np=npq$	1		6
(iii)	$Z = \frac{X - \mu}{\sigma}$ Mean 0, Variance 1	B1	For <u>BOTH</u>	1
(iv)	$M(\theta) = G(e^{\theta}) = (q + pe^{\theta})^n$	1		
	Z = aX + b with:			
	$a = \frac{1}{\sigma} = \frac{1}{\sqrt{npq}}$ and $b = -\frac{\mu}{\sigma} = -\sqrt{\frac{np}{q}}$			
	$\mathbf{M}_{Z}(\theta) = e^{b\theta} \mathbf{M}_{X}(a\theta)$	M1		
	$\therefore \mathbf{M}_{Z}(\theta) = e^{-\sqrt{\frac{np}{q}}\theta} \left(q + p e^{\frac{1}{\sqrt{npq}}\theta}\right)^{n} =$	1		
	$\left(qe^{-\frac{p\theta}{\sqrt{npq}}}+pe^{\frac{1-p}{\sqrt{npq}}\theta}\right)^n$	1	BEWARE PRINTED ANSWER	5
(v)	$M_{Z}(\theta) = \left(q - \frac{qp\theta}{\sqrt{npq}} + \frac{qp^{2}\theta^{2}}{2npq} + \frac{qp^{2}\theta^{2}}{2npq}\right)$	M1	For expansion of exponential terms	
	terms in $n^{-3/2}$, n^{-2} ,+	M1	For indication that these can be neglected as $n \rightarrow \infty$. Use of result	
	$p + \frac{pq\theta}{\sqrt{npq}} + \frac{pq^2\theta^2}{2npq} + \dots)^n =$		given in question	
	$(1 + \frac{\theta^2}{2n} + \cdots)^n \rightarrow$	1		
	<i>e</i> ^{°/2}	1		4

(vi)	N(0,1)	1		
	Because $e^{\theta^2/2}$ is the mgf of N(0,1)	E1		
	and the relationship between distributions and their mgfs is unique	E1		3
(vii)	"Unstandardising", $N(\mu, \sigma^2)$ ie $N(np, npq)$	1	Parameters need to be given.	1

3(i)	$H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$	1	Do NOT allow $\overline{X} = \overline{Y}$ or similar	
	Where μ_A , μ_B are the population means	1	Accept absence of "population" if correct notation μ is used. Hypotheses stated verbally <u>must</u> include the word "population".	
	Test statistic $26.4 - 25.38$ =	M1	Numerator	
	$\sqrt{\frac{2.45}{7} + \frac{1.40}{5}}$	M1 M1	Denominator two separate terms correct	
	$\frac{1.02}{\sqrt{0.63} = 0.7937} = 1.285$	A1		
	Refer to N(0,1) Double-tailed 5% point is 1.96 Not significant No evidence that the population means differ	1 1 1 1	No FT if wrong No FT if wrong	10
(ii)	CI (for $\mu_A - \mu_B$) is			
	$1.02 \pm$ $1.645 \times$ 0.7937 = $1.02 \pm 1.3056 =$	B1 M1		
	(-0.2856, 2.3256)	A1 cao	Zero out of 4 if not N(0,1)	4
(iii)	H_0 is accepted if -1.96< test statistic < 1.96	M1	SC1 Same wrong test can get M1,M1,A0.	
	i.e. if $-1.96 < \frac{\overline{v} - \overline{v}}{0.7937} < 1.96$ i.e. if $-1.556 < \overline{x} - \overline{v} < 1.556$	M1	SC2 Use of 1.645 gets 2 out of 3.	
	In fact, $\overline{X} - \overline{Y} \sim N(2, 0.7937^2)$	AI M1	BEWARE PRINTED ANSWER	
	So we want $P(-1.556 < N(2,0.7937^2) < 1.556) =$	M1		
	$P\left(\frac{-1.556-2}{0.7937} < N(0,1) < \frac{1.556-2}{0.7937}\right) =$	M1	Standardising	
	P(-4.48 < N(0,1) < -0.5594) = 0.2879	A1 cao		7
(iv)	Wilcoxon would give protection if assumption of Normality is wrong.	E1		
	Wilcoxon could not really be applied if underlying variances are indeed	E1		
	Wilcoxon would be less powerful (worse Type II error behaviour) with such small samples if Normality is correct.	E1		3

4 (i)	There might be some consistent source of plot-	E2	E1 – Some reference to extra		
	to-plot variation that has inflated the residual		variation.		
	and which the design has failed to cater for.		E1 – Some indication of a reason.	2	
(ii)	Variation between the fertilisers should be				
	compared with experimental error.	E1			
	······································				
	If the residual is inflated so that it measures				
	more than experimental error the				
	comparison of between - fertilisers variation				
	with it is less likely to reach significance	E2	(F1 F1)	3	
(iiii)	Randomised blocks	1		5	
(111)	Randomised blocks	1			
		Е1	Diastra (atring) algority correctly		
		EI	blocks (sulps) clearly collectly		
	B		oriented w.r.t. fertiliser gradient.		
	A	F 1			
	D	EI	All fertilisers appear in a block.		
	Е	54			
		EI	Different (random) arrangements in		
	SDECIAL CASE: Latin Square $\frac{2}{1}$ (1.51)		the blocks.		
	SPECIAL CASE. Launi Square $-(1, E1)$			4	
(iv)	Totals are: 95.0 123.2 86.8 130.2 67.4				
(1)	(each from sample of size 4)				
	Grand total 502 6				
	502.6^2				
	"Correction factor" $CF = \frac{502.6}{1.00} = 12630.338$				
	Total SS = $13610.22 - CF = 979.882$				
		MI			
	Between fertilisers SS =				
	95.0^2 + 67.4^2 - CF =	N/1			
	$\frac{4}{4}$ $\frac{1}{4}$ $\frac{1}{4}$	IVI I	For correct method for any two		
	13308.07 - CF = 677.732				
	Residual SS (by subtraction) =	AI	If each calculated SS is correct		
	979.882 - 677.732=302.15				
	Source of variation SS df MS MS Ratio	<u>M1</u>			
		M1			
	Between fertiliser $677.732 \underline{4} 169.433 \underline{8.41}$	<u>1,A1</u>			
	Residual 302.15 <u>15</u> 20.143 /	⊢			
	Total 979.882 19				
	Refer to $F_{4,15}$	1	No FT if wrong		
	-upper 5% point is 3.06	1	No FT if wrong		
	Significant	1			
	- seems effects of fertilisers are not all the same	1		12	
(vii)	Independent N (0 σ^2 [constant])	1		12	
(vii)	independent it (0, o [constant])	1			
		1		3	
		1		5	

Mark Scheme 4771 June 2007

1.			
(i)		M1 A1	4 nodes and 5 arcs
(ii)	No. Two arcs AC.	M1 A1	
(iii)	A B C(bus) C(train)	M1 A1	5 nodes and 5 arcs
(iv)	No. ABDC(train)A is a cycle.	M1 A1	

2.			
(i)	Rucksack 1: 14; 6 Rucksack 2: 11; 9 final item will not fit.	M1 A1 B1	6 must be in R1
(ii)	Order: 14, 11, 9, 6, 6 Rucksack 1: 14; 11 Rucksack 2: 9; 6; 6	B1 M1 A1	ordering 11 in R1
(iii)	Rucksack 1: 14; 9	B1	
	Rucksack 2: 11; 6; 6 e.g. weights.	B1	

(i)						
Ac	tivity		Duration (minutes)	Immediate predecessors		
А	Ri	g foresail	3	_	D1	
В	Lo	wer sprayhood	2	_	BI	A, B, C, DEH&I
С	Sta	art engine	3	_		$D, L, \Pi \& \Gamma$
D	Pu	mp out bilges	4	С	B1	F
Е	Ri	g mainsail	1	В		
F	Ca	st off mooring ropes	1	A, C, E	B1	G and J
G	Mo	otor out of harbour	10	D, F		
Н	Ra	ise foresail	3	Α		
Ι	Ra	ise mainsail	4	Е		
J	Sto	op engine and start sailing	1	G, H, I		
[$\begin{array}{c} A \\ A \\ \hline \\ & 3 \\ \hline \\ & 6 \\ \hline \\ & 3 \\ \hline \\ & 3 \\ \hline \\ & 6 \\ \hline \\ & 3 \\ \hline \\ & 5 \\ \hline \\ & 7 \\ \hline \\ & 7 \\ \hline \\ & 7 \\ \hline \\ & 6 \\ \hline \\ & 6 \\ \hline \\ & 7 \\ \hline \\ & 6 \\ \hline \\ & 7 \\ \hline \\ \\ & 7 \\ \hline \\ \\ & 7 \\ \hline \\ \\ \hline \\ & 7 \\ \hline \\ \\ & 7 \\ \hline \\ \\ \hline \\ \\ & 7 \\ \hline \\ \\$					backward pass
	Proje	ct duration: 18 minutes			B1	
(iii)	H and	11			B1	
(iv)	25 mi	ins			B1	
	Must do A, B, E, C, F, D (in appropriate order) then H and I with G, then J.					
(v)	18 mins				B1	
	e.g. Colin does C, D Crew does A, B, E, F Thence G et al					

(i)(a)	e.g.	Dry: Wet: Snowy:	00 - 39 40 - 69 70 - 99	M1 A1	proportions efficient
(b)	e.g.	Dry: Wet: Snowy:	00 - 19 20 - 69 70 - 99	M1 A1	proportions efficient
(c)	e.g.	Dry: Wet: Snowy: Reject:	00 – 27 28 – 55 56 – 97 98 & 99	M1 A1 A1	reject some proportions reject 2
(ii)	D (to	day) → D	\rightarrow S \rightarrow S \rightarrow W \rightarrow S \rightarrow D \rightarrow D	M1 A1 A1 A1	applying their rules sometimes dry rules wet rules snowy rules
(iii)	3/7 (0	or 4/8)		B1	
(iv)	a (mi	ich) longe	r simulation run, with a "settling in" period ignored.	B1 B1	
(v)	Defir Assu Weat	ning days a ming that her depen	as dry, wet or snowy is problematical. the transition probabilities remain constant. ds on more than just previous day's weather	B1 B1	

6.

Mark Scheme 4772 June 2007

1.															
 (a)(i) He should salute it. Since all objects which don't move are painted any unpainted object must move, and anything that moves must be saluted. (ii) We do not know. We do not know about painted objects. Some will have been painted because they do not move, but there may be some objects which move which are painted. We do not know whether this object moves or not. 											B1 M1 A B1 M1 A	.1 .1			
(b)															
((m	\Rightarrow	s)	^	(~	m	\Rightarrow	p))	^	2	р	\Rightarrow	S			
1	1	1	1	0	1	1	1	O	0	1	1	1			
1	1	1	1	0	1	1	0	1	1	0	1	1		M1	8 rows
1	0	0	0	0	1	1	1	O	0	1	1	0		Al	m⇒s
1	0	0	0	0	1	1	0	O	1	0	1	0		A1	~m⇒p
0	1	1	1	1	0	1	1	0	0	1	1	1		A1	first \land
0	1	1	0	1	0	0	0	0	1	0	1	1		A1 seco A1 resu	second \wedge
0	1	0	1	1	0	1	1	0	0	1	1	0			result
0	1	0	0	1	0	0	0	0	1	0	1	0			
(c)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												M1 A1 A1 A1	reordering contrapositive modus ponens	

3.																
(i)													M1	distances		
		1	2	3	4			1	2	3	4		A2	6 changes		
	1	6	3	6	5		1	2	2	2	2		M1	(-1 each error)		
	2	3	4	3	2		2	1	4	4	4		A1	1 to 3 route (2)		
	3	6	3	2	1		3	4	4	4	4		A2	rest		
	4	5	2	1	2		<u>J</u>	2	2	3	3			(-1 each error)		
	-	5	2	1	2		т	4	2	5	5					
(ii)	Distance from row 1 col 3 of distance matrix (6)												B1 B1			
	Rout	e fron	n row	1 col	3 of	route r	natrix	x (2),	then	from	row	2 col 3	BI B1			
	(4), t	hen fr	om re	ow 4 (col 3	(3). So	012	43.					DI			
(iiii)	6			\frown	4											
(111)			3	\square	4 >								B1	whether or not		
		6	< /	<u> </u>	•									loops included		
		5 2	imes	3												
	4 3															
	$2 \bigcirc 1 \bigcirc 2$															
(iv)	1 2	431	l										B1			
	lengt	h = 12	2										B1			
	12	434	121	L									BI			
(v)	6							、	\bigcirc	4						
		1						5	\rightarrow	2						
		_ 6						/								
		5					2		3							
		4_	-	\rightarrow	3								M1			
	2	$\underline{\circ}$	1	\bigcirc	2								A1	MST		
	MST	has l	ength	6, so	lowe	r boun	d = 6	+ 2 -	+ 3 =	11			A1	add back		
	TOP	1.1		а -	1	10							D1	11 to 12		
(V1)	TSP	Iength	1 1S e1	ther 1	l or	12							B1	either 11 or 12		

4.												
(i)												
(1)	Р	x		v	S1	S		HS			M1	initial tableau
	1	-1			0	0		0			Al	
	0	2		1	1	0) 12	250				
	0	2		-1	0	1		0				
	1	1		0	1	0) 12	250			M1	pivot
	0	2		1	1	0) 12	250			A2	(-1 each error)
	0	4		0	1	1	12	250				
										DI	•	
	1250 m ² of paving and no decking											interpretation
(ii)	2-pha	se										
	Α	Р	Х	у	S ₁	S	2 S ₃	a	RI	HS		
	1	0	1	0	0	0) —1	. 0	20	00	M1 A1	new objective
	0	1	1	0	1	0) 0	0	12	50	D1	aumlug
	0	0	2	1	1	0	0 0	0	12	50	BI B1	surpius
	0	0	4	0	1	1	0	0	12	50	DI	artificiar
	0	0	1	0	0	0) —1	. 1	20	00	B1	new constraint
	1	0	0	0				1	-			
	1	0	0	0	1		$\frac{0}{1}$	-1	10	50		
	0	1	0	1	1		$\frac{1}{2}$	$\frac{-1}{2}$	84	50	M1	
	0	0	0	0	1	1	γ <u>∠</u> Λ		<u> </u>	50	A2	
	0	0	1	0	0	() _1	1	20	$\frac{30}{10}$	112	
	0	U	1	Ū	0		, 1	. 1	20	,0		
	Big-M	l altern	ative									
	P	x	y	S_{I}	<i>s</i> ₂	S_3	а	RF	IS			
	1	<i>1–M</i>	0	1	0	М	0	1250	-2M		MI AI	new objective
	0	2	1	1	0	0	0	12.	50	_	B1	surplus
	0	4	0	1	1	0	0	12.	50	_	<i>B1</i>	artificial
	0	1	0	0	0	-l	1	20	00	-	<i>B1</i>	new constraint
	1	0	0	1	0	1	M 1	10	50	-		
	$\begin{bmatrix} 1\\0 \end{bmatrix}$	0	1	1	0	2		84	50	-	M1	
	$\frac{0}{0}$	0	0	1	$\frac{1}{1}$	4	4	4.5	50	-	$\frac{M1}{A2}$	
	0	1	0	0	0	-1	1	20	00	1	114	
	LL			I						-		
					-							
	850 m	n ² of pa	ving	and 2	200 m^2	of dec	king.				A1	interpretation
(iii)												
-------	-------	----------------------	----------	----------------------------	-----------------------	-----------------------	----------------	------------	-----	-------	----------------	
	С	Х	у	s ₁	s ₂	S ₃	S ₄	RHS				
	1	0	0	1.25	0	1.75	0	1212.5		B1	new objective	
	0	0	1	1	0	2	0	850				
	0	0	0	1	1	4	0	450]			
	0	1	0	0	0	-1	0	200]			
	0	0	0	1	0	1	1	50		B1	new constraint	
]			
	1	0	0	-0.5	0	0	-1.75	1125]			
	0	0	1	-1	0	0	-2	750		N (1		
	0	0	0	-3	1	0	-4	250				
	0	1	0	1	0	0	1	250		AI		
	0	0	0	1	0	1	1	50				
	750 m	² of pavi	ng and 2	$50 \text{ m}^2 \text{ c}$	of deck	ing at a	n annual	cost of £1	125	A1	interpretation	

Mark Scheme 4773 June 2007

1.							
(i)	$u_{n+2} = u_{n+1} + p$	u _n				M1 A1	
(ii)	Auxiliary equation	1 is 2	$\lambda^2 - \lambda - 0.11$. = 0		M1 A1 M1	gen homogeneous
	Solution is $u_n = 2$	2.5(1	A1 B1 M1 A1 B1	with 1.1 & -0.1 case $1(u_0 = 20)$ +case $2(u_1 = 25)$ simultaneous 22.5 and -2.5 final answer			
(iii)	Rec rel 20.0000	0	Formula 20.0000	Int RR 20			
	25.0000	1	25.0000	25			
	27.2000	2	27.2000	27		B1	recurrence
	29.9500	3	29.9500	30			relation
	32.9420	4	32.9420	33		R1	checking formula
	36.2365	5	36.2365	36		DI	checking formula
	39.8601	6	39.8601	40		B1	discretising
	43.8461	7	43.8461	44			e
	48.2307	8	48.2307	48			
	53.0538	9	53.0538	53			
	58.3592	10	58.3592	58			
	64.1951 70.6146	11	64.1951	64 70			
	70.0140	12	70.6146	70			
	85 4437	17	85 4437	85			
	03.4437	14	03.4437	00			
	103 3869	16	103 3869	102			
	113 7256	17	113 7256	112			
	125.0981	18	125.0981	123			
	137.6080	19	137.6080	135			
	151.3687	20	151.3687	149			
	Formula: =INT(H3	3+B\$	52*H2+0.5)			B1	
(iv)	$v_{n+2} = (1-r)v_n$	+1 +	<i>pv</i> _n			M1 A1	

1. (cont)

(v)	Pruning	
<i>r</i> = 0.026	20	
	25	
	27	
	29	
	31	
	33	
	36	
	39	
	42	B1
	45	21
	48	
	52	
	56	
	60	
	65	
	70	
	75	
	81	
	87	
	94	
	101	
r = 0.025 to 0.027		B1

2 (cont).

(v) M P +	Max P11+P14 +J2+J4+ P11+P14	I+P15+P21+] A3+A6+A7 I+P15<=1	P24+P25+E1+E2+M3+M5+M6	M1 A1	objective
F F	P21+P24	4+P25<=1		M1	tree constraints
E	E1+E2<	=]		A2	(-1 each error)
	VI3+IVI5 [2+I4<=	+M6<=1		M1	location
	43+A6+	A7<=1		A2	constraints
P	P11+P21	+E1<=1		112	(-1 each error)
E	E2+J2<=	=1			(
Ν	M3+A3<	<=1			
P	P14+P24	1+J4<=1			
P	P15+P25	5+M5<=1			
N	M6+A6<	<=1			
Find F	<i>A</i> \<=1				
Ena					
LP OPT	TIMUM	FOUND AT	STEP 13		
OBJEC	CTIVE F	UNCTION V	ALUE	B1	running
1) 6.	.000000	1			C
VARIA	ABLE Y	VALUE	REDUCED COST		
P1	1 (0.000000	0.000000		
	4 ().000000	0.000000		
	5 I 1 (000000	0.000000		
P2	I (1 1	000000	0.000000		
P24	4 I 5 (000000	0.000000		
F1	5 (1 000000	0.000000		
E1 F2		000000	0.000000		
M3	3 (000000	0.000000		
M5	5 (0,000000	1 000000		
Me	5	1.000000	0.000000		
J2	-	1.000000	0.000000		
J4	(0.000000	0.000000		
A3	;	0.000000	0.000000		
A6	,	0.000000	0.000000		
A7	7	1.000000	0.000000		
P 5	P1 P2 5 4	E M J A 1 6 2 7		B1	interpretation

3.							
(i) e.g. C2 C3 C5 C7 C9 C11	M1 A1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
end							
(iii) LP OPTIMUM FOUND AT STEP 7 OBJECTIVE FUNCTION VALUE 1) 6.000000 B1 running							
VARIABLEVALUEREDUCED COSTC10.0000000.000000C21.0000000.000000C30.0000001.000000C41.0000000.000000C50.0000000.000000C60.0000000.000000C71.0000000.000000C80.0000001.000000C91.0000000.000000C100.0000000.000000C111.0000000.000000C121.0000000.000000							
Use locations 2, 4, 7, 9, 11 and 12. 6 cameras needed	B1 B1						
(iv) New objective: 5C1+2C2+3C3+5C4+4C5+1.5C6+2C7+2C8+5C9 +3C10+4C11+7C12	M1 A1						
(v) Running Use locations 2, 5, 7, 8, 9 and 11. $Cost = \pounds 19000$	B1 B1 B1						

4.						
(i)	e.g.					
	1 0	=LOOK	UP(RAN	B1	rand	
	2 0.1				B1	probs
	3 0.4				B1	outcomes
(ii)	=LOOK	TIP(RAND	∩ \$ B\$ 3∙	\$B\$5 \$A\$3·\$A\$5)	M1	formula
(11)	+ accum	nulation	(),¢ B ¢5.	φΩφο,φι (φο.φι (φο))	A1	repeats
	e.g.				B1	accumulation
	2	2				
	3	5				
	2	7				
	3	10				
	2	12				
	3	13				
	3	21				
	3	24				
	3	27				
	2	29				
	2	31				
	3 2	34 36				
	2	38				
	3	41				
(iii)	e.g.					
	dav 14	dav 15	dav16	no. of replacements	M1	first run
	0	0	1	5	A1	
	1	0	0	6		
	0	0	1	5		
	0	0	1	5	B 1	renetitions
	1	0	0	6	DI	repetitions
	0	1	0	5		
	0	1	0	6		
	1	U 1	1	5 5		
	1	0	1	5	DI	1 1 11.
	I	U	I	U	BI	probabilities
	0.4	0.3	0.5	5.4	B1	replacements

Q4 (Q4 (cont)											
(iv)	e.g.											
					Replacen	nents						
					day 1	day 2						
	1	0	1	1	2	6						
	2	0.1	1	2	0	7		R1	changed			
			2	4	0	7		DI	probabilities			
			2	6	1	6			producinities			
			2	8	1	6		B1	repetitions			
			2	10	0	7						
			2	12	1	6 7		B1	results			
			2	14	0	7		B1	averages			
			ו כ	15	0	7						
			2	10	I	0						
			2	21	0.6	65						
			-		0.0	0.0						
	5.4*(3	50+25) =	= 405 v	ersus				B1				
	0.6*(:	50+25) +	- 6.5*(.	30+25)	= 402.5			B1				
(v)	More	repetitic	ons.				B1					

Mark Scheme 4776 June 2007

1	X 1	f(x)	< 2							
	1 1	2.414214	 3 3 	ahanga at	faion hanaa i	root in (1, 1, 4))	ГМЛ1 А 1 1		
	1.4	5.509195	~ 3	change of	i sign nence i	00t III (1, 1.4)			
	12	2 92324	< 3	root in (1	2 1 4)	est 13	mpe 0 1			
	13	3 206575	> 3	root in (1	2 1 3)	est 1 25	mpe 0.05			
	1.25	3.0625	> 3	root in (1	.2. 1.25)	est 1.225	mpe 0.025	[M1A1A1]		
			-	(-	,,		тре	[A1]		
	mpe redu	ices by a facto	or of 2, 4, 8,				1			
	Better th	an a factor of	5 after 3 mo	ore iteration	S			[M1A1] [TOTAL 8]		
2	v	$1/(1 \pm v^{4})$					volues	[41]		
4	л 0	1/(1+X +)		M =	0 498054		values.	[A1]		
	0.25	0.006100		T =	0.498034			[A1]		
	0.25	0.990109		$S = (2M - 1)^{-1}$	(0.4052)4 + T) / 3 =	0 493801		[A1] [M1]		
	0.5	0.941170		5 - (2141	1)/3-	0.495001				
	h	S	٨S							
	05	0 493801								
	0.25	0 493952	0.000151			/ one term e	enough	[M1]		
	Extrapol	ating:	0.493952 -	- 0.000151	$(1/16 + 1/16^{-1})$	$(2^{2} +) =$	0 493962	[M1A1]		
	0.49396	annears reliah	$\Delta ccent$	0.000131	(1/10 + 1/10	·)	0.475702	[11]		
	0.47570	uppeurs renue	ne. (necept	0.475702)				[TOTAL 8]		
3	Cosine rule: 5 204972									
-	Approx f	formula:	5.205	5228				[A1]		
	Absolute	error:	0.000)255				[B1]		
	Relative	error:	0.000)049				[B 1]		
4(i)	r represe	nts the relativ	e error in X					[TOTAL 5] [F1]		
- (1)	represe		•••••							
(ii)	$X^n = x^n(1)$	$(+r)^n \approx x^n (1)$	+ nr) for sn	nall r				[A1E1]		
(11)	hence rel	ative error is	nr					[]		
(iii)	pi =	3.141593		(abs error:	0.001264)		[M1]		
()	22/7 =	3.142857		rel error:	0.000402)		[A1]		
	approx re	elative error in	π^2 (multipl	y by 2):		0.000805	(0.0008)			
	approx re	elative error in	$n \operatorname{sqrt}(\pi)$ (m)	ultiply by 0	.5):	0.000201	(0.0002)	[M1M1A1]		
	11		1 () (1 5 5	,					
								[TOTAL 8]		
5	:	x $f(x)$								
	-	1 3		f(x) =	3 x (x-4) / ((-1)(-5) +		[M1A1]		
	(0 2			2 (x+1)(x-4	4) / (1)(-4) +		[A1]		
		4 9			9 (x+1) x /	(5)(4)		[A1]		
				f(x) =	$0.55 x^2 - 0.55 x^2$	45 x + 2		[A1]		
				f'(x) =	1.1 x - 0.45	5		[B 1]		
				Hence min	imum at $x = 0$	0.45 / 1.1 = 0	.41	[A1]		
								[TOTAL 7]		

Mark Scheme

6(i)	Sketch show with x-axis	wing curve as improve	, root, initia ed estimate	al estimate,	tangent, inter	section of tangent	[E1E1E1]
(;;)					٦		[subtotal 3]
(11)	3.5					Sketch showing root, α	[G2]
	2.5					E.g. starting values just to the left of the root can produce an x1 that is the wrong side of the asymptote	[M1] [E1]
		 	ii i i	2 1.4 1.5		E.g. starting values further left can converge to zero.	[M1] [E1]
							[subtotal 6]
(iii)	Convincing	g algebra to	obtain the	N-R formu	la		[M1A1]
	r xr I	0 1.2 root is 1.16	1 1.169346 56 to 4 dp	2 1.165609	3 1.165561	4 1.165561	[M1A1A1] [A1]
	differences ratio of diff ratio of diff	from root ferences ferences is	decreasing	-0.03065 (by a large	-0.00374 0.1219 factor), so fas	-4.8E-05 Accept diffs of succ 0.012877 ster than first order	essive terms [M1A1] [E1] [subtotal 9]
7							[TOTAL 18]
(i)	x 1 2	g(x) 2.87 4.73	Δg 1 86	$\Delta^2 g$			
	3	6.23	1.50	-0.36			
	4 5	7.36 8.05	1.13 0.69	-0.37 -0.44			[M1A1A1]
	Not quadra Because se	tic cond differ	ences not c	onstant			[E1] [E1]
							[subtotal 5]
(ii)	x 1 2	g(x) 2.87	Δg	$\Delta^2 g$			
	3 5	6.23 8.05	3.36 1.82	-1.54			[B 1]
	Q(x) = 2.87	7 + 3.36 (x 0.6125 +	- 1)/2 - 1.5 2.45 x - 0.1	4 (x - 1)(x - 925 x ²	3)/8		[M1A1A1A1] [A1A1A1] [subtotal 8]
(iii)	x 2 4	Q(x) 4.7425 7.3325	g(x) 4.73 7.36	error 0.0125 -0.0275	rel error 0.002643 -0.00374	Q: errors: rel errors:	[A1A1] [A1] [M1A1] [subtotal 5] [TOTAL 18]

Mark Scheme 4777 June 2007

1(i)	Convincing algebra to $k = (x_2 - x_1)/(x_1 - x_0)$ [M1A]Convincing algebra to $\alpha = (x_2 - k x_1)/(1 - k)$ or equivalent[M1A1][subtot]										
(ii)	x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5	y=x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5	y=f(x) 1.5 1.527842 1.612144 1.755252 1.961151 2.235574 2.586161 3.022674 3.557265 4.204819	8 7 6 5 4 3 2 1							
	5 5.5 6	5 5.5 6	4.983366 5.914581 7.024391	0	2	4	6	[G2]			
	converges slowly to	2 1.961151 1.942783	diverges from root	4.5 4.204819 3.807921	5 4.983366 4 95514	5.5 5.914581 6 820878	set up iteration	[M1A1]			
	root near 2	1.934241 1.9303 1.928489 1.927657	near 5	3.339412 2.872419 2.488967 2.228729	4.90763 4.828739 4.70068 4.500432	9.3175 21.8726 1466.344	near 2 near 5 (theoretical arg	[A1] [A1A1]			
		1.927037		2.07777	4.205432	#NUM!	involving f 'acc	eptable) subtotal 7]			
(iii)	x0 2 1.92631 1.926953	x1 1.961151 1.926659 1.926953	x2 1.942783 1.926818 1.926953	k 0.472807 0.458143 0.45827	new x0 1.92631 1.926953 1.926953	=alpha	k est of root use as x0 iterate	[M1A1] [M1A1] [M1] [M1A1]			
	x0 5 5.023872 5.023461	x1 4.983366 5.024167 5.023461	x2 4.95514 5.024673 5.023461	k 1.696813 1.71656 1.716217	new x0 5.023872 5.023461 5.023461	= beta	alpha beta	[A1] [A1]			
	x0 4.6 5.216066 5.047555 5.02388 5.023461	x1 4.349412 5.365628 5.064991 5.024181 5.023461	x2 3.996895 5.647933 5.095267 5.024697 5.023461	k 1.406756 1.887551 1.73646 1.716567 1.716217	new x0 5.216066 5.047555 5.02388 5.023461 5.023461	4.6	range to 5.7 [[st	M1A1A1] ıbtotal 12]			

[TOTAL 24]

June 2007

2 (i)	(i) Substitute $f(x) = 1, x^2, x^4, x^6$ into the integration fomula Obtain $a + b = h$ $a\alpha^2 + b\beta^2 = h^3/3$ $a\alpha^4 + b\beta^4 = h^5/5$ $(a\alpha^6 + b\beta^6 = h^7/7)$											
		$(a\alpha^* + b)$	$\beta^* = n^{1}/7$						[subtotal 7]			
(ii)	E.g.	x sin(x) / x	0.1 0.998334	0.01 0.999983	0.001 1				[B 1]			
(ii)	x 0 0.5 1 1.5 2 2.5 3	sin(x) / x 1 0.958851 0.841471 0.664997 0.454649 0.239389 0.04704	1.2 1 0.8 0.6 0.4 0.2 0									
	3.5	-0.10022	-0.2 d	1	2	3	4		[G2]			
	Single applica of Gau rule	ıtion ssian 4-pt	m= α, β -0.86114 -0.33998 0.339981 0.861136	1.570796 x 0.218127 1.036755 2.104837 2.923466	h= f(x) 0.992089 0.830241 0.408942 0.074022	1.570796 a, b 0.347855 0.652145 0.652145 0.347855 sum: integral:	0.345103 0.541438 0.26669 0.025749 1.17898 1.851937		set up [M4] [A1]			
Subdiv	iding the interva	; 1	m= m=	0.785398 2.356194	h= h=	0.785398 gives 0.785398 gives sum	1.370762 0.481175 1.851937	(= 6dp)	[M1A1] [M1A1] [A1] [subtotal 13]			
(iii)			By trial and e m= α, β -0.86114 -0.33998 0.339981 0.861136	error 0.53242 x 0.073934 0.351407 0.713433 0.990906 Henc	h= f(x) 0.999089 0.979546 0.917302 0.8442 ee t = 2m =	0.53242 a, b 0.347855 0.652145 0.652145 0.347855 1.065	0.347: 0.638: 0.598: 0.2930 (1.064	538 806 214 659 1 84)	trial and error [M1A1] [Subtotal 4]			
								[TOTAL 24]			

			new y	у'	У	Х	h	Euler	3 (i)
			0.02	0.1	0	0	0.2		
setup			0.080404	0.30202	0.02	0.2	0.2		
[M2]			0.182079	0.508372	0.080404	0.4	0.2		
			0.326073	0.719971	0.182079	0.6	0.2		
estimates			0.513783	0.938552	0.326073	0.8	0.2		
[A1A1]					0.513783	1	0.2		
[]									
				ratio of	diffs	v(1)	h		
differences				diffs	units	0 513783	0.2		
[M1A1]				unio	0.056019	0.569802	0.1		
				0 509387	0.028535	0.598337	0.05		
[15:1]		first order	n n r o x 0.5 so t	0.505038	0.020333	0.612748	0.05		
cubtotol 7	г	list order	appiox 0.5, so 1	0.303038	0.014411	0.012/40	0.025		
subtotal /]	L								
	• •	nouv	1-2	1-1		V	ad h	Madifi	(;;)
	y Do		KZ	KI 0.02	y O	X		Eular	(II)
)Z 15	0.040202	0.000404	0.02	0 040202	0	0.2	Eulei	
setup	2	0.12107	0.102120	0.00082	0.040202	0.2	0.2		
	53	0.24548.	0.145028	0.102588	0.1216/5	0.4	0.2		
		0.41305	0.1895/1	0.145565	0.245483	0.6	0.2		
estimates	16	0.626440	0.236562	0.190228	0.413051	0.8	0.2		
[A1A1]					0.626446	1	0.2		
				ratio of	diffs	y(1)	h		
differences	(diffs		0.626446	0.2		
[A1]					0.000619	0.627065	0.1		
				0.238113	0.000147	0.627213	0.05		
[E1]	er	second orde	approx 0.25, so	0.242993	3.58E-05	0.627249	0.025		
subtotal 6]	1								
-	-						or-corrector	predict	(iii)
	corr3	corr?	corr1	nred	v '	V	x	h	()
	0.040412	0.04041	0 040202	0.02	0.1	y O	0	0.2	
satun	0.122124	122121	0.12189 0	0.02	0.30/12/	0.040412	02	0.2	
[M3]	0.122124	246211	0.12109 0.	0.224722	0.512080	0.122124	0.2	0.2	
	0.240214	.240211 414122	0.243942 0	0.224722	0.312383	0.122124	0.4	0.2	
	0.41415/	414152	0.413802 0.	0.391/98	0.727917	0.240214	0.0	0.2	
	0.028000	.02/998	0.02/309 0.	0.004398	0.951306	0.414137	0.8	0.2	
estimates						0.628006	1	0.2	
[AIAI]							(1)	1.	
1*66							y(1)	n 0 2	
lillerences						0.00056	0.628006	0.2	
[AI]			1 5:00	G.:11 ·	0.0504/0	-0.00056	0.62/447	0.1	
res 4 = 4 -		es very	order. Differend	Still second	0.250462	-0.00014	0.627307	0.05	
[E1E1]	_	lified Euler.	gnitude to mod	sımılar in n	0.250113	-3.5E-05	0.627272	0.025	
subtotal 8]	[
_							1		<i>(</i> •)
values			ratio of	diffs	average	pre-corr	mod Euler		(iv)
[A1]			diffs		0.627226	0.628006	0.626446		
differences	(3.04E-05	0.627256	0.627447	0.627065		
[A1]	125	approx 0.1	0.124555	3.78E-06	0.62726	0.627307	0.627213		
[E1]	rder	so third or	0.111332	4.21E-07	0.627261	0.627272	0.627249		
subtotal 3]	[
0									
'OTAL 24]	T								

4 (i)	0	1	2	3	1			
	3	0	1	2	2	x1 =	0.666667	elimin'n
	2	3	0	1	3			[M1M1M1]
	1	2	3	0	4			[A1A1]
		1	2	3	1			
		3 -0.66	667 -0.	33333	1.666667	x2 =	0.666667	back sub
		2 2.666	667 - 0.	66667	3.333333			[M1]
		2.222	222 3.1	11111	0.444444			solutions
		3.111	-0.4	44444	2.222222	x3 =	0.666667	[A1A1A1A1]
			3.4	28571	-1.14286	x4 =	-0.33333	
	pivot (shad	ed) is elemer	nt					[M1]
	of largest n	nagnitude in	column					[E1]
	Demonstrat	te check by s	ubstituting v	alues back	into equations.			[B1]
								[subtotal 13]
(ii)	Apply to	1	0	0	0			at least one v
	$\mathbf{v} =$	0	1	0	0			[M1]
		0	0	1	0	1	VB: clear	other three
		0	0	0	1	e	evidence	[M1]
						1	required	
	To get	-0.20833	0.29167	0.04167	0.04167	t	hat own	
	$M^{-1} =$	0.04167	-0.20833	0.29167	0.04167	1	outine	
		0.04167	0.04167	-0.20833	0.29167	i	s used	columns
		0.29167	0.04167	0.04167	-0.20833			[A1A1A1A1]
								[subtotal 6]
(iii)	The produ	ct of the pive	ots is 96					[M1A1]
	In each of t	he first three	cases, the p	ivot is in th	e second row			
	of the reduc	ced matrix. T	his is equiva	alent to thre	e row			
	interchange	es. Hence mu	ltiply by (-1)	$)^{3}$				[M]E1]
	i.e. determi	nant is -96	· r-j ~j (1	, ·				[<u>A</u> 1]
								[subtotal 5]
								[TOTAL 24]

7895-8, 3895-8 AS and A2 MEI Mathematics June 2007 Assessment Session

Unit Threshold Marks

	Unit	Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	54	46	38	31	24	0
4752	Raw	72	54	47	40	33	26	0
4753	Raw	72	60	52	45	38	30	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	65	57	49	41	34	0
4755	Raw	72	59	51	44	37	30	0
4756	Raw	72	52	45	38	32	26	0
4757	Raw	72	53	46	39	32	25	0
4758	Raw	72	55	47	40	33	25	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	59	51	43	36	29	0
4762	Raw	72	59	52	45	38	31	0
4763	Raw	72	61	53	45	37	30	0
4764	Raw	72	62	54	46	38	31	0
4766	Raw	72	55	48	41	35	29	0
4767	Raw	72	58	51	44	37	30	0
4768	Raw	72	62	53	45	37	29	0
4769	Raw	72	54	47	40	33	27	0
4771	Raw	72	59	53	47	41	35	0
4772	Raw	72	52	45	39	33	27	0
4773	Raw	72	59	51	43	36	29	0
4776	Raw	72	53	46	40	33	26	0
4776/02	Raw	18	13	11	9	8	7	0
4777	Raw	72	55	47	39	32	25	0

Specification Aggregation Results

_	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	43.5	64.3	80.2	90.9	97.5	100	9403
7896	57.9	78.6	90.1	96.2	98.6	100	1301
7897	88.2	97.1	100	100	100	100	34
7898	100	100	100	100	100	100	2
3895	27.4	42.6	57.3	70.9	82.9	100	12342
3896	55.4	73.4	85.1	92.1	97.1	100	1351
3897	75.2	87.2	97.3	99.1	100	100	109
3898	71.4	82.1	82.1	96.4	96.4	100	28

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

