RECOGNISING ACHIEVEMENT

ADVANCED GCE UNIT
 MATHEMATICS

Mechanics 3

MONDAY 21 MAY 2007

Morning
Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages)
List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $\mathrm{gm} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

1 A particle P is moving with simple harmonic motion in a straight line. The period is 6.1 s and the amplitude is 3 m . Calculate, in either order,
(i) the maximum speed of P,
(ii) the distance of P from the centre of motion when P has speed $2.5 \mathrm{~m} \mathrm{~s}^{-1}$.

2 A tennis ball of mass 0.057 kg has speed $10 \mathrm{~m} \mathrm{~s}^{-1}$. The ball receives an impulse of magnitude 0.6 N s which reduces the speed of the ball to $7 \mathrm{~m} \mathrm{~s}^{-1}$. Using an impulse-momentum triangle, or otherwise, find the angle the impulse makes with the original direction of motion of the ball.

3 A particle P of mass 0.2 kg is projected horizontally with speed $u \mathrm{~m} \mathrm{~s}^{-1}$ from a fixed point O on a smooth horizontal surface. P moves in a straight line and, at time $t \mathrm{~s}$ after projection, P has speed $v \mathrm{~m} \mathrm{~s}^{-1}$ and is $x \mathrm{~m}$ from O. The only force acting on P has magnitude $0.4 v^{2} \mathrm{~N}$ and is directed towards O.
(i) Show that $\frac{1}{v} \frac{\mathrm{~d} v}{\mathrm{~d} x}=-2$.
(ii) Hence show that $v=u \mathrm{e}^{-2 x}$.
(iii) Find u, given that $x=2$ when $t=4$.

4

Two uniform smooth spheres A and B, of equal radius, have masses 4 kg and 3 kg respectively. They are moving on a horizontal surface, and they collide. Immediately before the collision, A is moving with speed $15 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α to the line of centres, where $\sin \alpha=0.8$, and B is moving along the line of centres with speed $12 \mathrm{~m} \mathrm{~s}^{-1}$ (see diagram). The coefficient of restitution between the spheres is 0.5 . Find the speed and direction of motion of each sphere after the collision.

Two uniform rods $A B$ and $B C$, each of length 1.4 m and weight 80 N , are freely jointed to each other at B, and $A B$ is freely jointed to a fixed point at A. They are held in equilibrium with $A B$ at an angle α to the horizontal, and $B C$ at an angle of 60° to the horizontal, by a light string, perpendicular to $B C$, attached to C (see diagram).
(i) By taking moments about B for $B C$, calculate the tension in the string. Hence find the horizontal and vertical components of the force acting on $B C$ at B.
(ii) Find α.

A circus performer P of mass 80 kg is suspended from a fixed point O by an elastic rope of natural length 5.25 m and modulus of elasticity $2058 \mathrm{~N} . P$ is in equilibrium at a point 5 m above a safety net. A second performer Q, also of mass 80 kg , falls freely under gravity from a point above P. P catches Q and together they begin to descend vertically with initial speed $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ (see diagram). The performers are modelled as particles.
(i) Show that, when P is in equilibrium, $O P=7.25 \mathrm{~m}$.
(ii) Verify that P and Q together just reach the safety net.
(iii) At the lowest point of their motion P releases Q. Prove that P subsequently just reaches O. [3]
(iv) State two additional modelling assumptions made when answering this question.

A particle P of mass 0.8 kg is attached to a fixed point O by a light inextensible string of length 0.4 m . A particle Q is suspended from O by an identical string. With the string $O P$ taut and inclined at $\frac{1}{3} \pi$ radians to the vertical, P is projected with speed $0.7 \mathrm{~m} \mathrm{~s}^{-1}$ in a direction perpendicular to the string so as to strike Q directly (see diagram). The coefficient of restitution between P and Q is $\frac{1}{7}$.
(i) Calculate the tension in the string immediately after P is set in motion.
(ii) Immediately after P and Q collide they have equal speeds and are moving in opposite directions. Show that Q starts to move with speed $0.15 \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) Prove that before the second collision between P and Q, Q is moving with approximate simple harmonic motion.
(iv) Hence find the time interval between the first and second collisions of P and Q.

