RECOGNISING ACHIEVEMENT

ADVANCED GCE UNIT

Further Pure Mathematics 3

MONDAY 18 JUNE 2007

Morning
Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages)
List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

1 (i) By writing z in the form $r \mathrm{e}^{\mathrm{i} \theta}$, show that $z z^{*}=|z|^{2}$.
(ii) Given that $z z^{*}=9$, describe the locus of z.

2 A line l has equation $\mathbf{r}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+t(\mathbf{i}+4 \mathbf{j}+2 \mathbf{k})$ and a plane Π has equation $8 x-7 y+10 z=7$. Determine whether l lies in Π, is parallel to Π without intersecting it, or intersects Π at one point.

3 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=\mathrm{e}^{3 x} \tag{6}
\end{equation*}
$$

4 Elements of the set $\{p, q, r, s, t\}$ are combined according to the operation table shown below.

	p	q	r	s	t
p	t	s	p	r	q
q	s	p	q	t	r
r	p	q	r	s	t
s	r	t	s	q	p
t	q	r	t	p	s

(i) Verify that $q(s t)=(q s) t$.
(ii) Assuming that the associative property holds for all elements, prove that the set $\{p, q, r, s, t\}$, with the operation table shown, forms a group G.
(iii) A multiplicative group H is isomorphic to the group G. The identity element of H is e and another element is d. Write down the elements of H in terms of e and d.
(i) Use de Moivre's theorem to prove that

$$
\begin{equation*}
\cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1 \tag{4}
\end{equation*}
$$

(ii) Hence find the largest positive root of the equation

$$
\begin{equation*}
64 x^{6}-96 x^{4}+36 x^{2}-3=0 \tag{4}
\end{equation*}
$$

giving your answer in trigonometrical form.

6 Lines l_{1} and l_{2} have equations

$$
\frac{x-3}{2}=\frac{y-4}{-1}=\frac{z+1}{1} \quad \text { and } \quad \frac{x-5}{4}=\frac{y-1}{3}=\frac{z-1}{2}
$$

respectively.
(i) Find the equation of the plane Π_{1} which contains l_{1} and is parallel to l_{2}, giving your answer in the form $\mathbf{r} . \mathbf{n}=p$.
(ii) Find the equation of the plane Π_{2} which contains l_{2} and is parallel to l_{1}, giving your answer in the form $\mathbf{r} \cdot \mathbf{n}=p$.
(iii) Find the distance between the planes Π_{1} and Π_{2}.
(iv) State the relationship between the answer to part (iii) and the lines l_{1} and l_{2}.

7 (i) Show that $\left(z-\mathrm{e}^{\mathrm{i} \phi}\right)\left(z-\mathrm{e}^{-\mathrm{i} \phi}\right) \equiv z^{2}-(2 \cos \phi) z+1$.
(ii) Write down the seven roots of the equation $z^{7}=1$ in the form $\mathrm{e}^{\mathrm{i} \theta}$ and show their positions in an Argand diagram.
(iii) Hence express $z^{7}-1$ as the product of one real linear factor and three real quadratic factors.

8 (i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+y \tan x=\cos ^{3} x \tag{8}
\end{equation*}
$$

expressing y in terms of x in your answer.
(ii) Find the particular solution for which $y=2$ when $x=\pi$.

9 The set S consists of the numbers 3^{n}, where $n \in \mathbb{Z}$. (\mathbb{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \ldots\}$.)
(i) Prove that the elements of S, under multiplication, form a commutative group G. (You may assume that addition of integers is associative and commutative.)
(ii) Determine whether or not each of the following subsets of S, under multiplication, forms a subgroup of G, justifying your answers.
(a) The numbers $3^{2 n}$, where $n \in \mathbb{Z}$.
(b) The numbers 3^{n}, where $n \in \mathbb{Z}$ and $n \geqslant 0$.
(c) The numbers $3^{\left(\pm n^{2}\right)}$, where $n \in \mathbb{Z}$.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

