ADVANCED GCE UNIT

MATHEMATICS (MEI)
Differential Equations
MONDAY 18 JUNE 2007

Morning
Time: 1 hour 30 minutes

Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer any three questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \mathrm{~ms}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72.
- There is an insert for use in Question 3.

ADVICE TO CANDIDATES

- Read each question carefully and make sure that you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

1 An object is suspended from one end of a vertical spring in a resistive medium. The other end of the spring is made to oscillate and the differential equation describing the motion of the object is

$$
\ddot{y}+4 \dot{y}+29 y=3 \cos t
$$

where y is the displacement at time t of the object from its equilibrium position.
(i) Find the general solution.
(ii) Find the particular solution subject to the conditions $\dot{y}=y=0$ when $t=0$. What is the amplitude of the motion for large values of t ?
(iii) Find the displacement and velocity of the object when $t=10 \pi$.

At $t=10 \pi$, the upper end of the spring stops oscillating and the differential equation describing the motion of the object is now

$$
\ddot{y}+4 \dot{y}+29 y=0 .
$$

(iv) Write down the general solution. Describe briefly the motion for $t>10 \pi$.

2 The differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=1+x^{n}
$$

where n is a positive constant, is to be solved for $x>0$.

First suppose that $n \neq 2$.
(i) Find the general solution for y in terms of x.
(ii) Use your general solution to find the limit of y as $x \rightarrow 0$. Show how the value of this limit can be deduced from the differential equation, provided that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ tends to a finite limit as $x \rightarrow 0$.
(iii) Find the particular solution given that $y=-\frac{1}{2}$ when $x=1$. Sketch a graph of the solution in the case $n=1$.

Now consider the case $n=2$.
(iv) Find y in terms of x, given that y has the same value at $x=1$ as at $x=2$.

3 There is an insert for use with part (iii) of this question.

Water is draining from a tank. The depth of water in the tank is initially 1 m , and after t minutes the depth is $y \mathrm{~m}$.

The depth is first modelled by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-k \sqrt{y}(1+0.1 \cos 25 t)
$$

where k is a constant.
(i) Find y in terms of t and k.
(ii) If the depth of water is 0.5 m after 1 minute, show that $k=0.586$ correct to three significant figures. Hence calculate the depth after 2 minutes.

An alternative model is proposed, giving the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=-0.586(\sqrt{y}+0.1 \cos 25 t) \tag{*}
\end{equation*}
$$

The insert shows a tangent field for this differential equation.
(iii) Sketch the solution curve starting at $(0,1)$ and hence estimate the time for the tank to empty.

Euler's method is now used. The algorithm is given by $t_{r+1}=t_{r}+h, y_{r+1}=y_{r}+h \dot{y}_{r}$, where \dot{y} is given by (${ }^{*}$).
(iv) Using a step length of 0.1 , verify that this gives an estimate of $y=0.93554$ when $t=0.1$ for the solution through $(0,1)$ and calculate an estimate for y when $t=0.2$.
(v) Use $\left(^{*}\right)$ to show that when the depth of water is less than 1 cm the model predicts that $\frac{\mathrm{d} y}{\mathrm{~d} t}$ is positive for some values of t.

[Question 4 is printed overleaf.]

4 The following simultaneous differential equations are to be solved.

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-5 x+4 y+\mathrm{e}^{-2 t} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=-9 x+7 y+3 \mathrm{e}^{-2 t}
\end{aligned}
$$

(i) Show that $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+x=3 \mathrm{e}^{-2 t}$.
(ii) Find the general solution for x in terms of t.
(iii) Hence obtain the corresponding general solution for y, simplifying your answer.
(iv) Given that $x=y=0$ when $t=0$, find the particular solutions. Find the values of $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ when $t=0$. Sketch graphs of the solutions.

