

Mathematics (MEI)

Advanced GCE 4756

Further Methods for Advanced Mathematics (FP2)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1 (a)(i)	$f(t) = \arcsin t$		
	$\Rightarrow f'(t) = \frac{1}{\sqrt{1-t^2}} = (1-t^2)^{-\frac{1}{2}}$	B1	Any form
	$\Rightarrow f''(t) = -\frac{1}{2} \left(1 - t^2\right)^{-\frac{3}{2}} \times -2t$	M1	Using Chain Rule
	$=\frac{t}{\left(1-t^2\right)^{\frac{3}{2}}}$	A1 (ag)	
		3	
(ii)	$f(x) = \arcsin\left(x + \frac{1}{2}\right)$		
	$\Rightarrow f(0) = \arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}$	B1 (ag)	$\frac{\pi}{6}$ obtained clearly from $f(0)$ www
	$f'(0) = \left(1 - \left(\frac{1}{2}\right)^2\right)^{-\frac{1}{2}} = \frac{2}{\sqrt{3}}$	M1 A1 (ag)	Clear substitution of $x = 0$ or $t = \frac{1}{2}$
	and $f''(0) = \frac{\frac{1}{2}}{\left(1 - \left(\frac{1}{2}\right)^2\right)^{\frac{3}{2}}} = \frac{4\sqrt{3}}{9}$		
	$f(x) = f(0) + x f'(0) + \frac{x^2}{2} f''(0) + \dots$	M1	Evaluating $f''(0)$ and dividing by 2
	$\Rightarrow \text{term in } x^2 \text{ is } \frac{2\sqrt{3}}{9} x^2$	A1 5	Accept $0.385x^2$ or better
(b)			
		G1 G1	Complete spiral with $r(2\pi) < r(0)$ $r(0) = a$, $r(2\pi) = a/3$ indicated or $r(0) > r(\pi/2) > r(\pi) > r(3\pi/2) > r(2\pi)$ Dep. on G1 above Max. G1 if not fully correct
	Area = $\int_{0}^{n} \frac{1}{2} r^2 d\theta$		
	$= \int_{0}^{\pi} \frac{\pi^{2} a^{2}}{2(\pi+\theta)^{2}} d\theta = \frac{\pi^{2} a^{2}}{2} \int_{0}^{\pi} \frac{1}{(\pi+\theta)^{2}} d\theta$	M1	Integral expression involving r^2
	$=\frac{\pi^2 a^2}{2} \left[\frac{-1}{\pi+\theta}\right]_0^{\pi}$	A1	Correct result of integration with correct limits
	$=\frac{\pi^2 a^2}{2} \left(\frac{-1}{2\pi} + \frac{1}{\pi}\right)$	M1	Substituting limits into an expression of the form $\frac{k}{\pi + \theta}$. Dep. on M1 above
	$=\frac{1}{4}\pi a^2$	A1 6	
	$\frac{3}{2}$ 1 1 $\frac{3}{2}$ 1 1 $[2 - 2 - 1]^{\frac{3}{2}}$	M1	arctan
(c)	$\int_{0}^{1} \frac{1}{9+4x^{2}} dx = \frac{1}{4} \int_{0}^{1} \frac{1}{\frac{9}{4}+x^{2}} dx = \frac{1}{4} \times \left[\frac{2}{3} \arctan \frac{2x}{3} \right]_{0}^{2}$	A1A1	$\frac{1}{4} \times \frac{2}{3}$ and $\frac{2x}{3}$
	$=\frac{1}{6}\arctan 1$	M1	Substituting limits. Dep. on M1 above
	$=\frac{\pi}{24}$	Al	Evaluated in terms of π
	24	5	19

2 (a)	$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta , \ z^{n} - \frac{1}{z^{n}} = 2j\sin n\theta$	B1	Both
	$\left(z - \frac{1}{z}\right)^5 = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$	M1	Expanding $\left(z - \frac{1}{z}\right)^5$
	$= z^{5} - \frac{1}{z^{5}} - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right)$ $\Rightarrow 32j\sin^{5}\theta = 2j\sin 5\theta - 10j\sin 3\theta + 20j\sin \theta$ $\Rightarrow \sin^{5}\theta = \frac{1}{14}\sin 5\theta - \frac{5}{14}\sin 3\theta + \frac{5}{2}\sin \theta$	M1 A1 A1ft	Introducing sines (and possibly cosines) of multiple angles RHS Division by $32(i)$
	$A = \frac{5}{8}, B = -\frac{5}{16}, C = \frac{1}{16}$		
	$\frac{3}{\pi i}$ i.e.	5	
(b)(i)	4 th roots of $-9j = 9e^{2^{n}j}$ are re^{jb} where $r = \sqrt{3}$	B1	Accept $9^{\frac{1}{4}}$
	$\theta = \frac{3\pi}{2}$	B1	Troopes
	$\Rightarrow \theta = \frac{3\pi}{8} + \frac{2k\pi}{4}$	M1	Implied by at least two correct (ft) further values
	$\Rightarrow \theta = \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$	A1	Or stating $k = (0), 1, 2, 3$ Allow arguments in range $-\pi \le \theta \le \pi$
		M1	Points at vertices of a square centre O or 3 correct points (ft)
	-2	A1 6	or 1 point in each quadrant
(ii)	Mid-point of SP has argument $\frac{\pi}{8}$	B1	
	and modulus of $\sqrt{\frac{3}{2}}$	B1	
	Argument of $w = 4 \times \frac{\pi}{8} = \frac{\pi}{2}$		
	and modulus = $\left(\sqrt{\frac{3}{2}}\right)^4 = \frac{9}{4}$	M1 A1 G1 5	Multiplying argument by 4 and modulus raised to power of 4 Both correct w plotted on imag. axis above level of P 16

4756

3 (a)(i)	$2\lambda^3 + \lambda^2 - 13\lambda + 6 = 0 \Longrightarrow (\lambda - 2)(2\lambda^2 + 5\lambda - 3) = 0$	B1	Substituting $\lambda = 2$ or factorising
	$\Rightarrow \lambda = 2 \text{ or } 2\lambda^2 + 5\lambda - 3 = 0$	M1	Obtaining and solving a quadratic
	$\Rightarrow (2\lambda - 1)(\lambda + 3) = 0$. 1 . 1	
	$\Rightarrow \lambda = \frac{1}{2}, \lambda = -3$	AIAI 4	
	$\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 6 \end{pmatrix}$	•	
(ii)	$\mathbf{M} \begin{vmatrix} -3 \\ -3 \end{vmatrix} = 2 \begin{vmatrix} -3 \\ -3 \end{vmatrix} = \begin{vmatrix} -6 \\ -6 \end{vmatrix}$	B1	
()			
	(1) (4)		
	$\mathbf{M}^{2}\mathbf{v} - 2^{2}\mathbf{v} - 4$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$	D2	Give B1 for one component with the
		D2	wrong sign
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$		
	$\left[\frac{3}{2}\right]$ $\left[\frac{3}{2}\right]$ $\left[\frac{3}{2}\right]$ $\left[\frac{3}{2}\right]$		Recognising that the solution is a
	$\mathbf{M} = \frac{-3}{2} = 2 = \frac{-3}{2} = \frac{-3}{2} = \frac{-3}{2}$	M1	multiple of the given RHS
	$\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ $\left(1\right)$		
	$\Rightarrow x = \frac{3}{2}, y = -\frac{3}{2}, z = \frac{1}{2}$	Al	Correct multiple
		5	
(iii)	$2\lambda^{3} + \lambda^{2} - 13\lambda + 6 = 0$ $2M^{3} + M^{2} - 13M + 6I = 0$	M1	Using Cayley-Hamilton Theorem
	$\Rightarrow \mathbf{M}^3 = -\frac{1}{2} \mathbf{M}^2 + \frac{13}{2} \mathbf{M} - 3\mathbf{I}$	1411	Using Cayley-Hammon Theorem
	$\rightarrow \mathbf{M}^4 = -\frac{1}{2}\mathbf{M}^3 + \frac{13}{2}\mathbf{M}^2 - 3\mathbf{M}$	M1	Multiplying by M
	$\Rightarrow \mathbf{M}^4 = -\frac{1}{2} \left(-\frac{1}{2} \mathbf{M}^2 + \frac{13}{2} \mathbf{M} - 3\mathbf{I} \right) + \frac{13}{2} \mathbf{M}^2 - 3\mathbf{M}$	M1	Substituting for M^3
	$\rightarrow \mathbf{M}^4 - \frac{27}{\mathbf{M}^2} \mathbf{M}^2 \frac{25}{\mathbf{M}} + \frac{3}{\mathbf{I}} \mathbf{I}$	A 1	
	$ = \sqrt{14} - \frac{1}{4} \sqrt{14} - \frac{1}{4} \sqrt{14} + \frac{1}{2} \sqrt{14} + \frac$	AI	
	$A = \frac{1}{4}, B = -\frac{1}{4}, C = \frac{1}{2}$	1	
(b)	$\mathbf{N} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$	B1	Order must be correct
	where $\mathbf{D} = \begin{pmatrix} -1 & 0 \end{pmatrix}$	D1	
	where $\mathbf{D} = \begin{pmatrix} 0 & 2 \end{pmatrix}$	DI	
	and $\mathbf{P} = \begin{pmatrix} 1 & -1 \end{pmatrix}$	R1	For B1B1 order must be consistent
	(2 1)	DI	Tor DTD1, order must be consistent
	$\Rightarrow \mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix}$	B1ft	Ft their P
	3(-2 1)	DIR	
	$\Rightarrow \mathbf{N} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 \end{pmatrix}$		
	3(2 1)(0 2)(-2 1)		
	$=\frac{1}{2}\begin{pmatrix} -1 & -2 \\ -2 & -2 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix}$	M1	Attempting matrix product
	$3(-2 \ 2)(-2 \ 1)$		F S F
	$=\frac{1}{2}\begin{pmatrix} 3 & -3 \\ -3 & -3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -3 & -3 \end{pmatrix}$	A1	
	3(-6 0) (-2 0)		
	OR Let $\mathbf{N} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$		
	(a - c)(1) = (1)		(a+1, c)(1)(0)
	$ \begin{vmatrix} a & c \\ b & d \end{vmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = -1 \begin{vmatrix} 1 \\ 2 \end{vmatrix} $ B1		$Or \begin{pmatrix} a+1 & c \\ b & d+1 \end{pmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$
	$(a \ c)(-1)$ (-1)		(a-2 c)(-1) (0)
			Or $\begin{bmatrix} b & d-2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	$\Rightarrow a+2c=-1, -a+c=-2$ B1		
	b+2d = -2, -b+d = 2 B1		Solving both pairs of constions
	$\rightarrow u-1, c-1, v-2, u-0$ MIAI	6	sorving bour pairs of equations 19

4 (i)	$2 \sinh x \cosh x$		
	$e^{x} + e^{-x} e^{x} - e^{-x}$		
	$= 2 \times \frac{2}{2} \times \frac{2}{2}$		
	$e^{2x} - e^{-2x}$	N / 1	Using exponential definitions and
	=2	MI	multiplying or factorising
	$=\sinh 2x$	A1 (ag)	
	Differentiating,		
	$2\cosh 2x = 2\cosh^2 x + 2\sinh^2 x$	Bl	One side correct
	$\Rightarrow \cos 2x = \cos x + \sin x$	<u>л</u>	Correct completion
(ii)			
		G1	Correct shape and through origin
	2		• • • • • • • • • • • • • • • • • • •
	$Volume = \pi \int_{0}^{1} (\cosh x - 1)^2 dx$	M1	$\int (\cosh x - 1)^2 dx$
	$=\pi\int_{0}^{2}\cosh^{2}x-2\cosh x+1dx$	A1	A correct expanded integral expression including limits 0, 2 (may be implied by later work)
	$=\pi \int_{0}^{2} \frac{1}{2} \cosh 2x - 2 \cosh x + \frac{3}{2} dx$	M1	Attempting to obtain an integrable form Dep. on M1 above
	$=\pi \left[\frac{1}{4}\sinh 2x - 2\sinh x + \frac{3}{2}x\right]_0^2$	A2	Give A1 for two terms correct
	$=\pi \left[\frac{1}{4} \sinh 4 - 2 \sinh 2 + 3\right]$		
	= 8.070	A1 7	3 d.p. required. Condone 8.07
(iii)	$y = \cosh 2x + \sinh x$	1	
()	$dy = 2 \sinh 2w + \cosh w$	D1	A man a a man at farma
	$\rightarrow \frac{1}{dx} = 2 \sin 2x + \cos x$	ы	Any correct form
	At S.P. 2 $\sinh 2x + \cosh x = 0$		
	$\Rightarrow 4 \sinh x \cosh x + \cosh x = 0$	M1	Setting derivative equal to zero and using identity
	$\Rightarrow \cosh x(4\sinh x+1)=0$	M1	Solving $\frac{dy}{dx} = 0$ to obtain value of sinh x
	$\Rightarrow \cosh x = 0$ (rejected)	A1	Repudiating $\cosh x = 0$
	$\Rightarrow \sinh x = -\frac{1}{4}$	A1	
	\Rightarrow r = ln $\left(-\frac{1}{1}+\frac{\sqrt{17}}{\sqrt{17}}\right)$	M1	Using log form of arsinh, or setting up and solving quadratic in e^x
		A1 7	A0 if extra "roots" quoted 18

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

