edexcel 쁯

Mark Scheme (Results)

J anuary 2012

International GCSE Mathematics
(4PM0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

J anuary 2012
Publications Code UG030468
All the material in this publication is copyright
© Pearson Education Ltd 2012

January 2012 International GCSE Mathematics (4PM0) Paper 01 Mark Scheme

Question	Working	Notes
1	$\begin{aligned} & y=-6 / 4 x-15 / 4, \text { gradient }=-3 / 2 \text { oe } \\ & y=10 / 15 x-9 / 15, \text { gradient }=2 / 3 \text { oe } \\ & \text { Product of gradients }=-3 / 2 \times 2 / 3=-1 \Rightarrow \text { lines perpendicular } \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 A1 } \\ \text { A1 } \\ \text { A1 } \\ \mathbf{4} \end{array}$
2	$\begin{aligned} & x(x+2)-(x+1)=2(x+1)(x+2) \\ & x^{2}+x-1=2 x^{2}+6 x+4 \\ & x^{2}+5 x+5=0 \\ & x=\frac{-5 \pm \sqrt{25-20}}{2}=-3.62,-1.38 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 A1 } \\ 4 \end{array}$
3	$\begin{aligned} & (3 x+1)(2 x-7)<0 \\ & -1 / 3<x<3^{1 / 2} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 A1 } \\ \text { M1 A1 } \\ 4 \\ \hline \end{array}$
4	$\begin{aligned} & \frac{10!}{7!3!} 1^{3}\left(\frac{1}{\sqrt{3}}\right)^{7} \\ & =120 \frac{1}{27 \sqrt{3}} \\ & =120 \frac{1}{27} \frac{\sqrt{3}}{3} \\ & =\frac{40}{27} \sqrt{3} \end{aligned}$	Allow all marks if x^{7} included. M1 A1 M1 rationalise A1 4
5	(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}$ (b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=5\left(x^{3}+2 x^{2}+3\right)^{4}\left(3 x^{2}+4 x\right)$	M1 two terms with one correct A1 M1 use chain rule A1 $5\left(x^{3}+2 x^{2}+3\right)^{4}$ A1 $\left(3 x^{2}+4 x\right)$ 5

8	(a) $k=\alpha / \beta \times \beta / \alpha=1$ (b) $\begin{aligned} & \alpha \beta=15 \text { and } \alpha+\beta=-m \\ & -h=\alpha / \beta+\beta / \alpha \\ & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\ & =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\beta \alpha} \\ & \Rightarrow h=\frac{30-m^{2}}{15} \end{aligned}$ (c) $\begin{aligned} & \alpha \beta=15 \Rightarrow \alpha(2 \alpha+1)=15 \\ & 2 \alpha^{2}+\alpha-15=0 \\ & (2 \alpha-5)(\alpha+3)=0 \\ & \alpha=21 / 2 \text { or } \alpha=-3 \end{aligned}$ (d) $\begin{aligned} & \beta=2 \times 21 / 2+1=6 \text { or } \beta=2 \times-3+1=-5 \\ & m=-(\alpha+\beta)=-(21 / 2+6) \text { or }-(-3-5) \\ & m=-81 / 2 \text { or } 8 \end{aligned}$	B1 M1 A1 M1 M1 M1 A1 oe M1 M1 A1 M1 M1 A1 13
9	$\begin{aligned} & \text { (a) } B D^{2}=5^{2}+6^{2}=61, B C^{2}=8^{2}+6^{2}=100, C D^{2}=8^{2}+5^{2}=89 \\ & 100=61+89-2 \sqrt{ } 61 \sqrt{ } 89 \cos B D C \\ & \cos B D C=25 / \sqrt{ }(61 \times 89) \\ & \quad=0.3393 \\ & \angle B D C=70.2^{\circ} \end{aligned}$ (b) $\begin{aligned} & \text { Area } B D C=1 / 2 \sqrt{ } 61 \sqrt{ } 89 \sin 70.2^{\circ} \\ & =34.7 \mathrm{~cm}^{2}(3 \mathrm{sf}) \end{aligned}$ (c) Area $D A C=1 / 2 \times 5 \times 8=20$ (d) $20=1 / 2 \times \sqrt{ } 89 \times A E \Rightarrow A E=40 / \sqrt{ } 89$ (e) Angle is $\angle B E A$ $\begin{aligned} & \tan B E A=6 / A E=6 \sqrt{ } 89 / 40 \\ & =1.415 \\ & \Rightarrow \angle B E A=54.8^{\circ} \end{aligned}$	

10	(a) (i) $\overrightarrow{B C}=-1 / 2 \mathbf{c}-\mathbf{a}+\mathbf{c}=1 / 2 \mathbf{c}-\mathbf{a}$ (ii) $\overrightarrow{P Q}=3 / 4 \mathbf{a}+1 / 2 \mathbf{c}+1 / 3(1 / 2 \mathbf{c}-\mathbf{a})=5 / 12 \mathbf{a}+2 / 3 \mathbf{c}$. (b) (i) $\overrightarrow{A T}=-3 / 4 \mathbf{a}+\lambda(5 / 12 \mathbf{a}+2 / 3$ c) (ii) $\overrightarrow{A T}=\mu(\mathbf{c}-\mathbf{a})$ (c) $\begin{aligned} & -3 / 4 \mathbf{a}+\lambda(5 / 12 \mathbf{a}+2 / 3 \mathbf{c})=\mu(\mathbf{c}-\mathbf{a}) \\ & \Rightarrow-3 / 4+5 / 12 \lambda=-\mu \text { and } 2 / 3 \lambda=\mu \\ & \Rightarrow 5 / 12 \lambda=3 / 4-2 / 3 \lambda \\ & \Rightarrow 5 \lambda=9-8 \lambda \\ & \Rightarrow \lambda=9 / 13 \\ & \Rightarrow P T: T Q=9: 4 \end{aligned}$	M1 A1 M1 $\quad 3 / 4 \mathbf{a}+1 / 2 \mathbf{c}+\ldots$ M1 $1 / 3(1 / 2 \mathbf{c}-\mathbf{a})$ A1 B1ft B1 M1 M1 A1ft M1 A1 A1ft 13
11	(a) $\begin{aligned} & V=\pi \int_{0}^{h} x^{2} d y=\pi \int_{0}^{h}\left(10 y-y^{2}\right) d y \\ & =\pi\left[5 y^{2}-\frac{1}{3} y^{3}\right]_{0}^{h} \\ & =\pi\left[5 h^{2}-\frac{1}{3} h^{3}\right] \\ & =1 / 3 \pi h^{2}(15-h) \end{aligned}$ (b) $\quad V=\pi\left(5 h^{2}-1 / 3 h^{3}\right) \Rightarrow \frac{\mathrm{d} V}{\mathrm{~d} h}=\pi\left(10 h-h^{2}\right)$ (c) $\frac{\mathrm{d} V}{\mathrm{~d} t}=\pi\left(10 h-h^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} t}$ When $h=1.5,6=\pi(15-2.25){ }^{\mathrm{d} h} / \mathrm{d} t$ $\Rightarrow^{\mathrm{d} h} / \mathrm{d} t=6 /(12.75 \pi)=0.150 \mathrm{~cm} / \mathrm{s}(3 \mathrm{sf})$ (d) $\quad W=\pi x^{2}=\pi\left(10 y-y^{2}\right)$ When depth is $h, W=\pi\left(10 h-h^{2}\right)$ $\frac{\mathrm{d} V}{\mathrm{~d} t}=\pi\left(10 h-h^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} t}=W \frac{\mathrm{~d} h}{\mathrm{~d} t}$ Since ${ }^{\mathrm{d} V} /{ }_{\mathrm{d} t}=6,{ }^{\mathrm{d} h} / \mathrm{d} t=6 / W$ so $k=6$	M1 use of $\int \pi x^{2} \mathrm{~d} y$ M1 A1 integration M1 use of correct limits A1 cso B1 oe M1 chain rule M1 A1 substitution A1 cao B1 M1 A1 13

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG030468 J anuary 2012

Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

