

GCE

Chemistry B (Salters)

Advanced GCE

Unit F334: Chemistry of Materials

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
✓ separates marking points	
not	answers which are not worthy of credit and which will CON a correct answer
ignore	statements which are irrelevant and will NOT 'CON' a correct answer
allow	answers that can be accepted
()	words which are not essential to gain credit
	underlined words must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording (replaces the old 'or words to that effect')
ora	or reverse argument

Annotations used in scoris:

Annotation	Meaning
✓	correct response
×	incorrect response
[805	benefit of the doubt
2000	benefit of the doubt <u>not</u> given
<u> Ter</u>	error carried forward
	information omitted
I	Ignore
I.	Reject

C	uesti	on	Answer	Marks	Guidance
1	(a)	(i)	all correct 2 marks \checkmark amide link only \checkmark	2	any correct structural formula including skeletal mixtures of structural and skeletal -CONH- Cs and Hs on ring IGNORE brackets and n etc
		(ii)	-CONH- circled ✓	1	ALLOW adjacent C atoms in circle
		(iii)	1,6-diamino ✓ hexane ✓ OR hexane ✓ -1,6-diamine ✓	2	If butane ALLOW 1,4-diamino for ecf mark IGNORE commas and dashes ALLOW 1,6-hexanediamine
	(b)	(i)	C CH ₂ CH ₂ NH ₂ HO CH ₂ CH ₂ CH ₂ CH ₂	1	ALLOW any formula that makes structure clear ALLOW cyclic amide

Qu	estion	n	Answer	Marks	Guidance
	((ii)	condensation AND water is eliminated/formed/lost ✓ IF cyclic amide in 1b(i) THEN addition AND hydrolysis (of ring) / water added	1	'addition' or 'addition polymerisation' is a CON ALLOW 'small molecule' instead of water any other named small molecule is a CON
	(c) ((i)	(polymer) <u>chains/molecules</u> are (highly) ordered/aligned AW ✓	1	ALLOW labelled diagram that shows alignment of chains by using parallel lines AW means other suitable phrases eg 'stacked closely and neatly' 'arranged regularly'/regularity of chains'
	((ii)	PPA chains are closer together ORA ✓	3	AS ALWAYS intermolecular bonds is synonymous with intermolecular forces NOT more areas of contact NOT just compacted together NOT just closely packed NOTE ALL 3 marking points are comparative
			so intermolecular bonds in PPA will be stronger OR more hydrogen bonds in PPA OR OR more intermolecular bonds in PPA ORA ✓ more energy/heat will be required to break the intermolecular bonds OR melt the polymer OR allow chains to move over each other ORA ✓		ALLOW any named intermolecular bond NOT 'higher temperature' for 'energy'
	((iii)	cold-drawing ✓	1	NOT co-polymerising IGNORE 'necking'

Questi	on	Answer	Marks	Guidance
(d)	(i)	 elimination ✓ addition ✓ addition ✓ 	3	IGNORE 'nucleophilic'
	(ii)	can be used in step 3 AW ✓	1	NOT step 2 ALLOW
(e)		acidified dichromate ✓	1	 IGNORE metal cation name of acid wrong formulae if name given oxidation state of 'dichromate' ALLOW H₂SO₄/H⁺ and Cr₂O₇²⁻ DO NOT ALLOW just dichromate
		Total	17	

Ques	stion	Answer	Marks	Guidance
2 (a)	1)	–COOH / carboxyl / carboxylic acid group ✓ is a proton/H ⁺ donor / loses H ⁺ ✓	2	correct equation showing dissociation gains both marks ALLOW 'gives H ⁺ ' <i>Mark separately</i>
(b)	(i)	CH ₂ OHCOOH + NaOH → CH ₂ OHCOONa + H ₂ O ✓	1	ALLOW CH ₂ OHCOO ⁻ Na ⁺ , Na ⁺ CH ₂ OHCOO ⁻ OR Na(CH ₂ OHCOO) IGNORE state symbols NOT CH ₂ OHNaCOO
	(ii)	 moles of NaOH used in titration = 16.00/1000 x 0.250 ✓ = 0.00400 moles of glycolic acid used in titration = answer from 1, scaled by ratio in equation in 2bi ✓ 0.00400 CHECK equation in 2(b)(i) 3A. moles of glycolic acid in 250 cm³ = (answer from 2) x 10 ✓ = 0.0400 mol OR 3B. mass of glycolic in 25 cm³ = (answer from 2)x M_r of glycolic acid ✓ 0.304 g OR 3C. concentration of glycolic acid = (answer from 2) x 1000/25 ✓ 0.16 mol dm⁻³ M_r of glycolic acid = 76.(0) ✓ 	6	There are several possible routes through this question after point 2, the 'mole route' A, the 'mass route' B and the 'concentration route' C If final answer is incorrect please annotate with ticks where the marks are awarded 2. ALLOW by implication if 0.004 used subsequently The marks are awarded for the working out given in bold OR the correctly calculated answer to that working (but no mark if calculated answer is shown and is wrong)

Quest	ion	Answer	Marks	Guidance
		5A. moles of glycolic acid in 100 cm ³ = (answer from 3A) x 100/14 ✓ 0.286 mol OR 5Bi. mass of glycolic acid in 250 cm ³ = (answer from 3A) x <i>M</i> _r of glycolic acid ✓ 3.04 g OR		ALLOW ecf for incorrect equation AND between each step ALLOW 'Acnegone' for 'glycolic acid' ALLOW answers in standard form
		5Bii. mass of glycolic in 250 cm³ = (answer from 3B) x 10 = √ 3.04 g OR 5C. concentration of undiluted glycolic acid = (answer from 3C) x 250/14 √ 2.86 mol dm⁻³		The following on the answer line with correct corresponding comment, score as follows, irrespective of working or lack of it. 21.7 scores 6 1.22 scores 5 (error in 5C) 12.2 scores 5 (error in 6C)
		 6. mass of glycolic acid in 100 cm³ undiluted = (answer from 5A) x M_r of glycolic acid OR = (answer from 5C /10) x M_r of glycolic acid = 21.7 (3 sf) AND correct comment ✓ 		2.17 scores 5 (error in 3A or 5Bii) 3.04 scores 5 (error in 6) these to other sf OR with incorrect comment score one mark less If one of the answers above applies place correct number of ticks by answer
(c)	(i)	H ₃ C O CH ₂ CH ₂ CH ₂ CH ₃	2	IGNORE where the circle cuts the bond as long COO is included ALLOW adjacent C atoms in circle
		butyl ethanoate ✓ ester link correct ✓		ALLOW butylethanoate without gap
	(ii)	butan-1-ol ✓ <u>concentrated</u> sulfuric acid/hydrochloric acid ✓	2	MUST HAVE number 1 DO NOT ALLOW ecf for alcohol in 2(c)(i) ALLOW formula for acid ONLY IGNORE spelling of name for H ₂ SO ₄ as long as it is clear

Quest	ion	Answer	Marks	Guidance
	(iii)	ethanoic acid: hydrogen bonding ✓ IGNORE pd-pd compound D: pd-pd ✓ hydrogen bonding is CON instantaneous dipole – induced dipole / id-id in both ✓	3	ALLOW 'pd-pd' / id-id abbreviations here ALLOW Van der Waals for id-id
(d)	(i)	The answer requires a comment for a carboxylic acid AND an alcohol so award ONE mark from each section below:	2	answers may be given on spectrum to score each point, range, bond and group in which it is found must be given
		CARBOXYLIC ACID (strong) peak at 1743 (cm ⁻¹) shows C=O in ester not acid OR no peak 1700 − 1725 (cm ⁻¹) shows no C=O in acid OR no broad peak at 2500 − 3200 (cm ⁻¹) shows no O−H in acid ✓ ALCOHOL no peak greater than 3000 / in range 3200 − 3600 (allow 3640) so no O−H in alcohol ✓		ALLOW carboxyl or carboxylic acid or COOH or ethanoic acid (or formula) for 'acid' FOR O-H ALLOW OH / hydroxyl FOR C=O ALLOW carbonyl NOT CO
	(ii)	peak at <i>m</i> / <i>z</i> 73: CH ₃ COOCH ₂ / C ₃ H ₅ O ₂ ✓ positive charge on any formula ✓ species lost:	3	ALLOW any correct structural or molecular formula for both answers ALLOW C ₄ H ₉ O ⁺ IF C ₄ H ₉ O ⁺ given above
(e)	(i)	CH ₂ CH ₂ CH ₃ / C ₃ H ₇ (NO charge) ✓ nucleophilic ✓ addition ✓	2	THEN species lost must be C ₂ H ₃ O / CH ₃ CO

Question	Answer	Marks	Guidance
(ii)	H ⁺ or H ₂ O or HCN	5	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ALLOW CN⁻ without triple bond ALLOW –ve charge on N of CN⁻
	both curly arrows correct (lower one must be from C of CN) ✓ intermediate ion correct ✓ gain of H ⁺ from water , HCN or direct to form the cyanohydrin ✓		IGNORE any arrow used to add H ⁺ etc to the intermediate
	Total	28	

Q	uesti	on	Answer	Marks	Guidance
3	(a)	(i)	repeating unit in DNA is a <u>nucleotide</u> ✓ formed from pentose/sugar/deoxyribose, phosphate and a base AW ✓	2	ALLOW • names for the four bases (T,A,C,G) instead of 'bases' • a named example of a base IGNORE ribose for two marks it must be clear that the sugar etc makes up the nucleotide
		(ii)	proteins are formed from <u>amino acid(s)</u> ✓	1	
		(iii)	proteins have more amino acids than the bases/nucleotides in DNA ✓ from which to construct many unique/different/more structures/arrangements/combinations to carry genetic data AW ✓	2	ALLOW actual numbers <i>eg</i> there are 20/21 amino acids in proteins and only 4 bases/nucleotides in DNA
	(b)		DNA chain correct formula completed for adenine AND both H bonds between correct atoms \checkmark correct polarities for one hydrogen bond \checkmark lone pair for one hydrogen bond \checkmark	3	

Questic	on	Answer	Marks	Guidance
(c)	(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	(ii)	arrows as in (d) (i) ✓	1	IGNORE extra arrows pointing to C–N bonds at ends of chain. Any other arrows are a CON
	(iii)	H_2N H_2C O OH correct amino acid (see opposite) \checkmark correct formula of ion \checkmark	2	IGNORE any cations ALLOW any correct structural formula IGNORE species formed from amino acids to right and left IGNORE • added H ⁺ to -NH ₂ • negative charge on alcohol i.eO ⁻ • -COOH instead NO ecf IF anion formed at CH ₂ O ⁻ then 1 mark max for amino acid
	(iv)	secondary: folding/twisting of polypeptide/amino acid chains/primary structure ✓ tertiary:	2	ALLOW (alpha)-helix/coiled OR (beta-)sheets / pleated sheets
		further/final folding OR 3D shape/structure ✓		ALLOW overall/global structure
		Total	14	

Q	uesti	on	Answer	Marks	Guidance
4	(a)	(i)	Correct inside oval (around peroxy Os) ✓ rest correct ✓	2	ALLOW another symbol for S electrons second mark depends on first
		(ii)	(NH ₄) ₂ S ₂ O ₈ ✓	1	 ALLOW with correct charges S₂O₈(NH₄)₂
	(b)		S ₂ O ₈ ²⁻ (is the stronger oxidising agent) because S ₂ O ₈ ²⁻ has a more positive <i>E</i> ^e value ✓ indicates a greater tendency AW to gain/attract/accept electrons/to be reduced ✓	2	without reference to oxidising strength of S ₂ O ₈ ²⁻ only scores 1 as it doesn't answer the question NOT 'higher' for 'more positive' both statements MUST BE comparative
			ORA ie: $S_2O_8^{2-}$ (is the stronger oxidising agent) because $Cr_2O_7^{2-}$ has a less positive / more negative E^9 value \checkmark indicates a smaller tendency AW to gain/attract/accept electrons/to be reduced OR indicates a greater tendency AW to lose electrons/to be oxidised \checkmark		
	(c)	(i)	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$ correct equation balanced \checkmark	1	IGNORE state symbols

Question	Answer	Marks	Guidance
(ii)	1. use filter of complementary colour to iodine/solution ✓	6	Using starch ANYWHERE is a CON and CANNOT gain marking point 3 ALLOW • filter/wavelength giving maximum absorption/absorbance • green/blue filter • suitable filter
	 zero colorimeter with water ✓ measure absorbance readings of standard solutions/solutions 		orange/yellow/brown is CON NOT 'solvent' instead of 'water'
	of known concentration (of iodine) ✓		
	4. plot calibration graph ✓		
	 take absorbance readings of the reacting mixture at known/certain times AW (must refer to <u>time</u> – may state units of time) ✓ 		
	6. convert absorbance readings to iodine concentrations using the calibration curve ✓		IGNORE references to quenching procedures
	QWC: In order to gain the mark for point 3, 5 or 6, absorbance must be used AND spelled correctly at least once		

Que	stion	Answer	Marks	Guidance
	(iii)		3	graph should show a curve (NOT straight line) decreasing from left to right (ANY decreasing curve will do)
		t _{1/2} t _{1/2}		at least two sets of construction lines should be shown on graph
		suitable graph sketched ✓		
		construction lines to determine half-lives from graph ✓		
		constant half-life (means first order) ✓		dependent on showing half-lives on graph (numbers on scale or by labelling with $t_{1/2}$)
(4	d) (i)	homogeneous, reactants and catalyst/Fe³+ are in the same phase / state ✓	1	MUST mention 'reactants and catalyst' IGNORE 'redox' NOT 'substrate' ALLOW 'all in solution' for 'same phase'
	(ii)	Fe ²⁺ $1s^22s^22p^6 3s^2 3p^6 3d^6$ Fe ³⁺ $1s^22s^22p^6 3s^2 3p^6 3d^5$ correct number of EXTRA electrons added $14(Fe^{2+})$ and $13(Fe^{3+})$ \checkmark both fully correct \checkmark	2	IGNORE 4s ⁰

Question	Answer	Marks	Guidance
(ii	1. Fe ³⁺ reacts with/oxidises I ⁻ ORA \checkmark $2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2} \checkmark$	6	IGNORE references to activation enthalpy OR variable valency/oxidation states
	explanation: the E° of Fe^{3+}/Fe^{2+} half-cell is more positive / less negative than that of the I^{-}/I_2 half-cell ORA \checkmark AW		ALLOW E° of Fe³+is more positive etc
	2. Fe ²⁺ reacts with/reduces S ₂ O ₈ ²⁻ ORA ✓		
	$S_2O_8^{2-} + 2Fe^{2+} \rightarrow 2SO_4^{2-} + 2Fe^{3+} \checkmark$		
	explanation: the E° of S₂O₃²-/SO₄²- half-cell is more positive than that of the Fe³+/Fe²+ half-cell ORA ✓ AW		ALLOW <i>E</i> ° of S ₂ O ₈ ² -is more positive etc
	QWC: to gain the explanation mark for either 1 or 2 , the data has to be linked correctly to the reaction		If answer starts with Fe ²⁺ rather than Fe ³⁺ lose 1 st mark but ecf since not answering question so can get 5 marks
(e) (i)	Rate = $k \times [S_2O_8^{2-}] \checkmark \times [I^-] \checkmark$	2	IGNORE state symbols
(ii	uses one of the 3 sets of results: 1. $k = 2.0 \times 10^{-5} / (0.075 \times 0.040)$ 2. $k = 4.0 \times 10^{-5} / (0.150 \times 0.040)$ 3. $k = 1.0 \times 10^{-5} / (0.075 \times 0.020)$	3	ecf from part e(i) provided working is shown ALLOW standard form (eg 6.7 x 10 ⁻³) Correct numerical answer without working scores 2 for calculation part
	$k = 0.0067 \checkmark$ $mol^{-1} dm^3 s^{-1} \checkmark$		NO ecf from first mark to second ALLOW any number of sig figs e.g. 0.007, 0.00667
			NOT 0.006 NOR 0.0066 ALLOW units in any order, e.g. dm ³ s ⁻¹ mol ⁻¹
(ii	2.0 x 10 ⁻⁵ ✓ mol dm ⁻³ s ⁻¹ ✓	2	Mark separately
	Total	31	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552

Telephone: 01223 552552 Facsimile: 01223 552553

