

GCE

Chemistry B (Salters)

Advanced Subsidiary GCE

Unit F332: Chemistry of Natural Resources

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

Annotation	Meaning				
1	alternative and acceptable answers for the same marking point				
✓	separates marking points				
not	answers which are not worthy of credit and which will CON a correct answer				
ignore	statements which are irrelevant and will NOT 'CON' a correct answer				
allow	answers that can be accepted				
()	words which are not essential to gain credit				
	underlined words must be present in answer to score a mark				
ecf	error carried forward				
AW	alternative wording (replaces the old 'or words to that effect')				
ora	or reverse argument				

Annotations used in scoris:

Annotation	Meaning
✓	correct response
×	incorrect response
BOD	benefit of the doubt
100	benefit of the doubt <u>not</u> given
[[4]	error carried forward
A	information omitted
	Ignore
□ K □	Reject

C	uesti	on	Answer	Marks	Guidance
					Please put a tick on every answer at all points in the text where credit has been gained (one tick per mark).
1	(a)	(i)	Two from: Refining oil ✓ Generating electricity ✓ Processes in a petrochemical plant ✓ Producing steel / iron ✓ Heating limestone / making cement ✓ Fermentation ✓	2	ALLOW burning a fossil fuel provided it is the context of another industrial activity (e.g. in a factory) IGNORE deforestation
1	(a)	(ii)	Any two from: React the CO₂ with lime / other suitable named solid ✓ Disposal in an old mine / old oil or gas well / other suitable disposal site ✓ Pump it / bury it under the ocean ✓	2	ALLOW removal of CO ₂ via reactions at source. (e.g. 'react the CO ₂ before it is released') IGNORE 'Pump into rocks' and 'in a container' DO NOT ALLOW 'pump it <u>into</u> the ocean' in place of under DO NOT ALLOW just 'pump it underground'
1	(b)		SiO₂: giant covalent / network / lattice / whole structure held together by covalent bonds / diagram ✓ CO₂: simple molecular / molecules / O=C=O AW ✓ Comparison of forces – one from: weaker intermolecular bonds (or forces) in CO₂ less energy needed to separate molecules of CO₂ bonds in SiO₂ are stronger than CO₂ intermolecular bonds (or forces) ✓	3	IGNORE 'intermolecular bonds' in SiO ₂ / giant molecule / giant structure / just 'covalent'. Marks can be given for a labelled/annotated diagram Any type of intermolecular bonds can be named and can be abbreviated. It must be clear that the intermolecular bonds in CO ₂ are being discussed, not the covalent bonds IGNORE intermolecular bonds in SiO ₂

C	uesti	on	Answer	Marks	Guidance
1	(c)	(i)	Makes their <u>bonds</u> vibrate OR Molecules change in <u>vibrational</u> energy ✓	1	
1	(c)	(ii)	Either: (vibrational energy) becomes kinetic energy ✓ KE results in increased temperature ✓ OR the molecules re-emit (some of the absorbed IR), ✓ in all directions ✓	2	Idea of transfer of energy is key here. In the <i>Either option</i> , mark independently ALLOW 'heat' or 'warmer' for increased temperature NOT reflect for re-emit In the <i>OR</i> option 2nd mark depends on 1st
1	(d)		$(395 / 1,000,000) \times 100 =$ 3.95 x 10 ⁻² / 0.0395 \checkmark	1	ALLOW any number of sf.
1	(e)	(i)	Hydrogencarbonate ✓	1	ALLOW hydrogen carbonate IGNORE incorrect oxidation states
1	(e)	(ii)	Rate of forward reaction = rate of back reaction OR reactants and products are formed at the same rate ✓ <u>Concentrations</u> of reactants and products remain constant OR closed system ✓	2	Mark independently DO NOT ALLOW concentrations of reactants and products are the same/equal
1	(e)	(iii)	System is not closed OR CO₂ moves away from the surface OR specific example of input or output of CO₂ ✓	1	ALLOW 'not a sealed system'
1	(e)	(iv)	CO ₃ ²⁻ (concentration) decreases ✓ <u>Equilibrium</u> (position) moves to left / towards reactants / towards hydrogencarbonate ✓	2	MUST mention equilibrium for the second mark Mark independently
1	(e)	(v)	$CO_2 + H_2O = 2H^+ + CO_3^{2-} \checkmark$	1	IGNORE state symbols DO NOT ALLOW H ₂ CO ₃ on right hand side

C	uesti	on	Answer	Marks	Guidance
1	(f)	(i)	Ba^{2^+} (aq) + $SO_4^{2^-}$ (aq) $\rightarrow BaSO_4$ (s) Equation \checkmark State symbols \checkmark	2	Completely correct equation (i.e. without spectator ions) scores the first mark Mark state symbols separately – must have the idea of $(aq) + (aq) \rightarrow (s)$
1	(f)	(ii)	$M_r(SO_4^{2^-}) = (32.1 + 4 \times 16 =) = 96.1 \checkmark$ $0.000074 \times M_r = 7.1(11) \times 10^{-3} \text{ g dm}^{-3} \checkmark$ $7.1 \times 10^{-3} \text{ for s.f. mark} \checkmark$	3	ALLOW M_r = 96 Apply ecf for mass of sulfate from an incorrect M_r value. DO NOT award second mark if another incorrect calculation follows 0.000074 x M_r Award sf mark for an answer that is the correct 2sf value of a shown calculation The correct answer on its own scores all marks
1	(f)	(iii)	Barium carbonate would precipitate out / solid barium carbonate forms / barium carbonate is insoluble ✓	1	
			Total	24	

C	uesti	on	Answer	Marks	Guidance
2	(a)		UV / radiation (in troposphere) does not have enough energy OR UV / radiation / energy (in troposphere) is not high enough frequency OR Bonds are too strong to be broken by the UV / radiation / energy ✓	1	ALLOW 'photon density in the troposphere is insufficient'
2	(b)	(i)	$(290 / 6.02 \times 10^{23}) \times 1000$ AND evaluate = $4.817 / 4.82 / 4.8 \times 10^{-19}$ J $\checkmark\checkmark$ $290 \times 1000 \checkmark$ OR $290 / 6.02 \times 10^{23} \checkmark$	2	A completely correct answer on its own scores both marks One mark is for converting 290 from kJ to J, i.e. multiply by 1000, the other mark is for dividing by 6.02x10 ²³ (the Avogadro constant) – in either order
2	(b)	(ii)	Answer to (b)(i) (rounded or not rounded) / 6.63 x 10 ⁻³⁴ ✓ = 7.266 / 7.27 / 7.3 x 10 ¹⁴ ✓	2	DO NOT ALLOW second mark for evaluating any other expression e.g. Answer to (b)(i) x 6.63 x 10 ⁻³⁴ A completely correct answer on its own scores both marks
2	(c)	(i)	Permanent dipole–(permanent) dipole ✓ Instantaneous dipole – induced dipole ✓	2	DO NOT ALLOW pd-pd ALLOW van der Waals' DO NOT ALLOW 'id-id'

C	uesti	on	Answer	Marks	Guidance
2	(c)	(ii)	H H H H Hydrogen bond between correct atoms of two correctly drawn water molecules ✓ Lone pair on relevant O in line with H bond ✓ Partial charges as shown ✓ O-H-O straight ✓	4	Hydrogen bond can be shown in other forms, but NOT as a solid line Second mark, but NOT third mark, can be scored if the hydrogen bond is between incorrect atoms If answer is completely correct except that H-bond is not shown, award 2 marks
2	(c)	(iii)	Nitrogen, oxygen, fluorine ✓	1	ALLOW N, O, F IGNORE C, P, S, Cl, Se, Br, I
2	(d)	(i)	Intermolecular bonds in chloromethane are weak <u>er</u> ORA OR Less energy needed to break intermolecular bonds in chloromethane ORA ✓	1	Answer must be a comparison ALLOW 'it' for chloromethane' IGNORE less / fewer IMB IGNORE references to specific types of intermolecular bond
2	(d)	(ii)	IMB in bromomethane are stronger ORA OR More energy needed to break intermolecular bonds in bromomethane ✓ because (bromomethane or Br) has more electrons / bromomethane molecules bigger / bromine atoms bigger / higher A _r for Br / higher M _r for CH ₃ Br ✓	2	ALLOW 'it' for bromomethane' DO NOT ALLOW if bond polarity is included in the reason (i.e. it must be id-id being described) IGNORE more IMB Mark independently

Q	Question		Answer	Marks	Guidance
2	(e)		x x x	1	Any two different symbols can be used to represent the electrons Candidate can draw circles for electron shells It MUST be clear that a pair of electrons is being shared between the H and the O IGNORE inner shell electrons DO NOT ALLOW diagram showing a charge
2	(f)	(i)	$CH_3Cl + H_2O \rightarrow CH_3OH + HCl \checkmark$	1	ALLOW multiples ALLOW CH ₄ O for methanol formula
2	(f)	(ii)	Methanol ✓	1	DO NOT ALLOW ecf from (f)(i) ALLOW methan-1-ol
2	(f)	(iii)	Nucleophilic ✓ Substitution ✓	2	Any clear indication scores the marks (e.g. ringed) More than two indicated: each additional incorrect answer indicated CON s a correct answer
2	(g)	(i)	C–Cl, because Cl has a greater electronegativity than Br ORA OR C–Cl, because there is a greater difference in electronegativity between C and Cl (than between C and Br)	1	Answer must be a comparison The word 'electronegativity' or 'electronegative' must be correctly spelled for the mark to be awarded
2	(g)	(ii)	C–Cl, because Cl atoms are smaller (than Br atoms) / bonding electrons are closer to the Cl nucleus / C–Cl bonds are shorter (than C–Br bonds) ✓	1	Answer must be a size comparison MUST have C–Cl AND reason for the mark ALLOW 'less shielding in chlorine' ORA
2	(g)	(iii)	As the weaker C–Hal bond in bromomethane makes it react faster ORA OR the chloromethane reacts more slowly and has the more polar bond ORA ✓	1	ALLOW 'reacts more easily' in place of 'reacts faster' ALLOW mark for 'the stronger the (C-Hal) bond, the more energy is needed to break it' if they have identified C–Cl as the stronger bond in 2(g)(ii)
			Total	23	

C	luesti	on	Answer	Marks	Guidance
3	(a)	(i)	[Ne] 3s ↑↓ 3p ↑↓ ↑ ↑	1	ALLOW single arrows in any 3p atomic orbitals pointing up or down ALLOW use of other arrow symbols (such as 1, as long as – in each box that contains a pair– one points up and one down)
3	(a)	(ii)	Acid rain ✓		ALLOW particulate formation ALLOW 'industrial smog' DO NOT ALLOW just 'smog'
3	(b)	(i)	$\begin{array}{ c c c c c }\hline SO_2 & +4 & SO_4^{\ 2^-} & +6 \\\hline I_2 & 0 & I^- & -1 \\\hline \\ One \ mark \ for \ \textbf{both} \ I \ oxidation \ states \checkmark \\ \\ One \ mark \ for \ \textbf{each} \ correct \ oxidation \ state \ for \ S \checkmark \checkmark \\\hline \end{array}$	3	ALLOW 2 marks if all number values are correct, but sign is to the right of the number (ie: 0, 1-, 4+, 6+) ALLOW 1 mark for S if answer gives 4 and 6, but no +
3	(b)	(ii)	Reducing agent: $SO_2 \checkmark$ Explanation: The oxidation number of the S (in SO_2) increases OR the SO_2 reduces the oxidation number of the I (in I_2) OR (SO_2 is) oxidised to $SO_4^{2-} \checkmark$	2	ALLOW sulphur dioxide ALLOW 'S / SO ₂ is oxidised' OR 'SO ₂ loses / donates electrons' IGNORE sulphur / S has lost electrons ALLOW 'I ₂ is reduced' OR 'iodine gains electrons' ALLOW 'number' for 'state' 2nd mark can be scored if S is incorrectly given as the reducing agent, otherwise 2nd mark depends on first
3	(b)	(iii)	Grey / black solid ✓	1	Both colour and 'solid' needed for mark Any combination of these colours but no others IGNORE shades of colour, like dark or pale

C	luesti	on	Answer	Marks	Guidance
3	(c)	(i)	Burette ✓	1	ALLOW small spelling error (e.g.: 2 rs or one t) NOT biuret
3	(c)	(ii)	$15.8 \times 0.0100 / 1000 = 0.000158 / 1.58 \times 10^{-4} \checkmark$	1	
3	(c)	(iii)	Answer to (ii) (=0.000158 / 1.58 x 10 ⁻⁴) ✓	1	
3	(c)	(iv)	Answer to (iii) / 50 x 1000 (= 0.00316 / 3.16 x 10 ⁻³) ✓	1	ALLOW any number of sf
3	(c)	(v)	Any ONE from: If answer (c)(iv) below 1.56 x 10 ⁻⁴ mol dm ⁻³ then wine not preserved ✓ If answer (c)(iv) between 1.56 x 10 ⁻⁴ and 3.28 x 10 ⁻³ mol dm ⁻³ then wine is preserved / below (legal) limit ✓ If answer (c)(iv) above 3.28 x 10 ⁻³ mol dm ⁻³ then taste of wine is affected / above (legal) limit ✓	1	Comment will depend upon the answer from (c) (iv)
3	(d)		An (acid-base) indicator changes colour (at the end-point) ✓	1	DO NOT ALLOW just 'use an acid-base indicator' or named indicator or just 'there is a colour change' IGNORE a specific incorrect colour change for a named indicator
			Total	14	

Q	uesti	on	Answer	Marks	Guidance
4	(a)	(i)	Ketone ✓	1	DO NOT ALLOW cycloalkane
4	(a)	(ii)	Alkene ✓	1	ALLOW 'carbon-carbon double bond'
4	(b)	(i)	O—— H ✓ Carboxylic acid ✓	2	ALLOW 'carboxyl' but not 'carboxylic' IGNORE anything attached to the left of the C ALLOW structure with nothing attached to C Diagram must show O-H bond
4	(b)	(ii)	Only neral should be ticked ✓	1	Any clear indication scores the mark More than one ticked: scores zero ALLOW x ✓ x
4	(c)	(i)		1	Candidate can draw structural formula instead of skeletal
4	(c)	(ii)	Rotation not possible around the C=C bond OR C=C restricts twisting ✓ It contains a C=C with two different groups on each carbon ✓	2	Mark separately IGNORE 'each side / end of C=C' ALLOW 'it contains a C=C with four different groups'
4	(d)		Thujone ✓	1	
4	(e)	(i)	High temperature AND pressure ✓	1	ALLOW temps 200 – 400°C ALLOW pressures of 50 – 70 atm IGNORE any chemicals DO NOT ALLOW mark if 'reflux' given

G	uesti	on	Answer	Marks	Guidance
4	(e)	(ii)	OH HO	4	ALLOW one mark for each pair of correct structures that show only one of the C=C having reacted. In this case put ✓ and ECF
			OH OH		ALLOW a mark if there are two structures with 2 OH groups in correct places, but the same error in the remainder of the molecule
			HO OH		
			HO HO		
			✓		

Q	Question		Answer		Marks	Guidance
4	(f)				5	Please use a range of annotations in the answer in appropriate places.
			1.	Both compounds (AW) decolourise bromine OR turns from yellow/orange/brown to colourless ✓		MP1: IGNORE red or combinations including red for bromine water colour. DO NOT ALLOW 'clear' for 'colourless'
			2.	because they are alkenes / have C=C / are unsaturated ✓		MP2 ALLOW mark if bromine reacts because it is a test for unsaturation
			3.	More drops required for neral than citronellal (ORA) ✓		MP3: ALLOW 'more bromine water is needed' or similar wording IGNORE comments relating to the speed of the reaction
			4.	because neral has twice as many double bonds as citronellal (ORA) / neral is more unsaturated ✓		MP4: ALLOW 'It has more double bonds' (ORA)
			1	C for: ing mp 1 with mp 2 OR linking mp 3 with mp 4 ✓		Please indicate QWC using green tick or red cross on the right of the pencil icon on the answer screen.
				Total	19	

C	luesti	on	Answer	Marks	Guidance
5	(a)		Propagation: one radical is used and replaced by another (<i>AW</i>) ✓ Reaction 6 OR 7 OR 8 ✓	2	ALLOW there is a radical on both sides of the equation Mark independently
5	(b)	(i)	(Fig. 1 shows) O₃ with double bond and single bond / O₃ with one bond of 4 electrons and one of 2 electrons ✓ Both bonds in O₃ are same length and so cannot be of different types OR all bonds are equivalent OR bonds would be different lengths ✓	2	ALLOW 2 marks for: 'The double bond would be shorter than the single bond' OR 'The bonds are not the same length if double and single'
5	(b)	(ii)	Three regions of electrons around <u>central</u> O OR three regions of electron density around <u>central</u> O OR two sets of bonding electrons and one lone pair around <u>central</u> O <i>AW</i> ✓ Regions of electrons repel to get as far apart as possible ✓	2	Answer needs to make clear that it is the central O being considered (e.g. 'there is a double bond, a single bond and a lone pair around the oxygen') Mark independently
5	(c)	(i)	(At higher altitudes) there is more UV ✓ with high enough frequency to break bond / high enough energy to break bond / low enough wavelength to break bond OR with high enough frequency to photodissociate molecule / high enough energy to photodissociate molecule / low enough wavelength to photodissociate molecule ✓	2	ALLOW 'more radiation' OR 'UV is more intense' ALLOW reverse argument at lower altitude
5	(c)	(ii)	Particles are closer together OR concentration increases $AW \checkmark$ so particles collide more frequently / more successful collisions per second \checkmark	2	DO NOT ALLOW reactants for particles ALLOW 'atoms' or 'molecules' for 'particles' DO NOT ALLOW 'there is a greater chance of collisions'

C	Question		Answer	Marks	Guidance
5	(c)	(iii)	Reaction 1 is faster at higher altitudes, reaction 2 is faster near the ground OR there is enough <u>UV</u> and enough pressure ✓	1	
5	(d)		High energy UV ✓	2	DO NOT ALLOW high intensity radiation ALLOW UVC / UVB / 10 ¹⁶ Hz / 200-320 nm
			(which could otherwise cause) <u>skin</u> cancer / damage to DNA / damage to <u>skin</u> / damage to eyes / damage to immune system / cell mutation / affects crops ✓		ALLOW sunburn

Question	Answer	Marks	Guidance
Question 5 (e)	Answer Reactions producing chlorine radicals: 1. ClO + ClO → ClOOCl OR described in words ✓ 2. ClOOCl + hv → 2Cl + O2 OR described in words ✓ Lack of termination – two from: 3. Reaction 8 is slow OR Cl + CH ₄ → CH ₃ + HCl is slow 4. Reaction 9 has no NO2 OR ClO + NO2 → ClONO2 has no NO2 (AW)	Marks 6	Guidance Please use a range of annotations in the answer in appropriate places. ALLOW radicals shown without the 'dot' in all cases MP1 and 2: ALLOW 'reaction 13 then reaction 14 produces chlorine radicals' (AW) for 2 marks MP3: ALLOW 'prevented' for 'slow' MP3 & 4: ALLOW description of reaction in words
	 5. (No NO₂ for reaction 9) because: EITHER it has all been converted to nitric acid/HNO₃ OR not regenerated since there is no upward flow in the vortex 		
	 Removal of ozone by chlorine radicals: 6. Cl^o + O₃ → ClO + O₂ OR described in words ✓ 7. ClO + O → Cl + O₂ OR reaction 7 in words OR chlorine radicals regenerated (in a catalytic cycle) OR chlorine radicals catalyse ozone depletion ✓ QWC 		
	8. QWC for linking 2 with 6 OR 4 with 5 ✓	1	Please indicate QWC using green tick or red cross on the right of the pencil icon on the answer screen.
	Total	20	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

