

GCE

Chemistry B (Salters)

Advanced Subsidiary GCE

Unit F331: Chemistry for Life

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning				
1	alternative and acceptable answers for the same marking point				
✓	separates marking points				
NOT	answers which are not worthy of credit and which will CON a correct answer				
IGNORE	statements which are irrelevant and will NOT 'CON' a correct answer				
ALLOW	answers that can be accepted				
()	words which are not essential to gain credit				
	underlined words must be present in answer to score a mark				
ecf	error carried forward				
AW	alternative wording (replaces the old 'or words to that effect')				
ora	or reverse argument				

Annotations used in scoris:

Annotation	Meaning
✓	correct response
×	incorrect response
1119	benefit of the doubt
N600	benefit of the doubt <u>not</u> given
1442	error carried forward
A	information omitted
T	Ignore

Subject-specific Marking Instructions

Please use ticks on the following questions: 1aii; 1cii; 3d (unless fully correct); 4a

Q	Question		Answer		Marks	Guidance
1	(a)	(i)	stopped by paper charged particles highly penetrating deflected by magnetic fields electromagnetic radiation unaffected by electric fields		3	If 4 responses, maximum mark 1 More than 4 responses, no marks
		(ii) Time taken for half the radioactive nuclei to decay OR mass to decrease by half OR radioactivity to reduce by a half ✓ Longer than – could cause long term effects/harm/damage/ionise to cells/named body part/tissue OR too faint/not enough to detect ✓ Shorter than – not long enough to be able to detect/travel round body AW OR could cause damage (same rules as above) ✓		3	Please make annotations where marks are scored Must mention time/how long for something to reduce by half: nuclei, atoms, substance, isotope(s), radioactivity, mass NOT nucleus, atom (ie in singular) DO NOT ALLOW 'decompose' for 'decay' For first alternative could suggest specific damage (eg mutation) must be 'to cells/named body part/tissue' not just 'to patient/ people/humans/body' 'Cancer' on its own is too vague For first alternative, answer must link time for detection/ travelling round body/ tracing/ producing image/ 'use' to short half life (and not just 'difficult to detect') ALLOW 'too much decay before use' AW	
	(b)	(i)	Calculation to show (181 is) the molecular mass FDG ✓ FDG ionised OR this is the molecular ion/cation		2	Any total not 181 is CON of first mark Mark separately ALLOW any reference to charge of +1or ionisation mentioned (but not to anion/- ion)

Q	uesti	on	Answer	Marks	Guidance
1	(b)	(ii)	(molecule) has broken (up/down)/fragmented OR two or more electrons knocked off ✓	1	Must imply 'molecule broken' ALLOW 'fragmentation' IGNORE 'lower Mr' NOT decay/decompose IGNORE references to ¹⁸ F decaying
	(c)	(i)	Correct charges on both ions ✓ Correct structures ✓	2	IGNORE inner shell electrons Square brackets not essential ALLOW with 8 electrons around Na Circles not needed Must be two different symbols for electrons ALLOW '1+' and '1-' (or +1 and -1) No charges scores zero; wrong number of ions scores zero
		(ii)		4	Please make annotations where marks are scored
			Bond angle = 90 (can be labelled on diagram) ✓ Six pairs/regions/groups/areas of electrons/areas of electron density around S/central atom ✓ Repel (to get) as far (away) as possible OR position (AW) themselves to minimise electron repulsion ✓ Octahedral/octahedron /'square (based) bipyramid' ✓		ALLOW right angle symbol on diagram All three ideas need to be present If central atom named it must be S(ulfur) NOT scored from diagram alone unless labelled NOT 'around central point' NOT 'repel as <i>much</i> as possible' NOT 'push' NOT 'atoms repel' NOT 'bonds repel' unless qualified earlier by mention of electrons being 'in' bonds ALLOW diagram that shows 3D structure unless CON in text
			TOTAL	15	

C	uest	ion	Answer	Marks	Guidance
2	(a)	(i)	alcohol ✓	2	ALLOW 'hydroxy(I)' IGNORE 'OH' NOT secondary, tertiary
			alkene ✓		ALLOW <u>carbon - carbon</u> double bond or C=C
		(ii)	C ₉ H ₁₀ O ✓	1	Atoms in any order DO NOT ALLOW 'split answers' eg C ₉ H ₁₀ O/C ₉ H ₉ OH
	(b)	(i)	<u>Fractional</u> distillation ✓	1	ALLOW fractionation
		(ii)	Division by appropriate A _r value ie C 38.7/12 (3.225) O 51.6/16 (3.225) H 9.7/1 (9.7) ✓	2	CH ₃ O scores both marks on its own ALLOW atoms in any order
			evaluation to give empirical formula (CH₃O) ✓		C ₂ H ₃ O ₂ scores one mark ('Z' used) - no other ecf's
		(iii)	Empirical formula is the simplest/lowest/smallest ratio of atoms OR different molecular formulae can have the same simplest/lowest/smallest ratio of atoms OR molecular formula can be multiple of empirical formula ✓	1	'It' cannot be accepted (unless qualified later in the answer) as it could refer to empirical or molecular in this context
		(iv)	Measure of 'number of ways' particles can be arranged OR degree/level/amount of disorder/chaos (in a system) ✓	1	'Number of ways' or 'disorder' can score on own but if elaborated on, must be particles or molecules (must be plural) and not in an element or compound NOT 'atoms' or 'electrons' (for particles)

F331 Mark Scheme June 2012

Question		-	Answer		Marks	Guidance
2 (c)					3	
	substance	type of bonding	structure type	characteristic physical property		One mark for each row correctly completed
	ethylene glycol	covalent	simple molecular giant OR lattice	low melting point		'Giant covalent' is a CON under 'type of bonding' column
	sodium chloride	ionic		soluble in <u>water</u> OR high m/b point OR		
				conduct when molten or in solution		
	paraffin	covalent	simple	insoluble in water		
	wax		molecular			
				~ ~ ~		
				TOTAL	11	

Q	uesti	on	Answer	Marks	Guidance
3	(a)		Low/reduced/less tendency to auto-ignite/pre-ignite/knocking/pinking ✓	1	DO NOT ALLOW 'no knocking'/'does not knock'
	(b)	(i)	H H − C − H H − C − C − C − C − H H − H − H − I ✓	1	All bonds to be shown DO NOT ALLOW CH ₃ /CH ₂ groups
		(ii)	Same molecular formula. Different structural formula/structure ✓	3	NOT 'chemical (formula)' ALLOW 'same number <u>and</u> types of atoms' ALLOW different arrangement (of atoms) ALLOW a description of different structures (eg 'branches in different places')
			Any two skeletal isomers of C ₈ H ₁₈ (some possible structures shown opposite) ✓ ✓		e.g.
					NOT straight chain IGNORE any name given ALLOW one mark for two correct non-skeletal formulae IGNORE dots
	(c)	(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O \checkmark$	1	ALLOW multiples All must be correct to score. IGNORE state symbols except CON if C ₅ H ₁₂ is given as 'aq'

Q	uesti	on	Answer	Marks	Guidance
3	(c)	(ii)	Breaking bonds is a positive/endothermic (enthalpy change) or absorbs/requires/takes in energy AND forming bonds is negative/exothermic or releases/gives out energy ✓ Value/magnitude of negative (exothermic) value bigger than positive (endothermic) ✓ Award of 2 nd mark depends on first being scored	2	e.g. 'more energy given out than taken in' <i>AW</i> references to different <i>number</i> of bonds CONs this mark 'More energy is released in making bonds than in breaking them' scores 1 'More energy is released in making bonds than is used (<i>AW</i>) in breaking them' scores 2 'Enthalpy changes of making the bonds are higher than those of breaking the bonds' scores 2 nd marking point, if first point already scored
		(iii)	Produces only/nearly all carbon dioxide (and water) ora ✓	1	ALLOW 'produces little/no/less CO or C/particulates/soot' ALLOW 'complete combustion' ora IGNORE 'does not release pollutants', references to unburnt hydrocarbons

Q	uesti	ion	Answer	Marks	Guidance
3	(c)	(iv)	Benefit: water is the only product OR no CO₂ ✓ Problem: storage issues OR leakage OR hydrogen is explosive/highly flammable OR requires changes to engine AW ✓	2	IGNORE no pollution no harmful products Reference to 'less NO _x ' is a CON ALLOW 'no CO/SO _x ' IGNORE: 'no greenhouse gases'/'carbon neutral' The context here is the use of hydrogen IGNORE references to sustainability and source of hydrogen IGNORE 'renewable' IGNORE references to generation of hydrogen needing fossil fuel/availability IGNORE hydrogen fuel not readily available
	(d)		Vol. of oxygen = 12.5 x 60cm³ (750) ✓ Vol. of air = 750 x 100/21 (3571) ecf ✓ ÷ 1000 (3.6 dm³) ecf ✓ Answer 3.6 (allow 3.57) scores all three marks without reference to working	3	Please make annotations where marks are scored (unless fully correct) If answer is not 3.57 dm³ (to 2 or more sig figs) then award marks for up to two of the following: • Multiplying 12.5 by 60 • multiplying a number by 100/21 • dividing by 1000 NB: this may have been done in the first steps i.e. look for '0.06' ALLOW 2 or more sig figs
	(e)	(i) (ii)	(Catalyst) (it) speeds up a reaction <u>and</u> can be recovered chemically unchanged/unchanged at end OR (it) provides a path/alternative route of lower activation enthalpy/energy ✓ B D A C ✓ ✓	2	one mark for two in the correct places
			TOTAL	17	eg B A D C scores one mark B A C D does not score any marks
			TOTAL	17	

Q	uesti	on	Answer	Marks	Guidance
4	(a)			4	Please make annotations where marks are scored
			Electrons drop to lower energy levels ✓		ALLOW 'back to ground state' providing energy levels mentioned (see below) 'Shells' must be qualified by reference to energy levels somewhere in answer Reference to energy levels can come from any place in answer
			emit light/electromagnetic radiation/photons ✓		
			Energy proportional to frequency OR E = hv OR E = hf ✓		ALLOW freq/wavelength related to energy gap/energy lost
			(Gaps between) levels unique/different for a particular/different elements ✓		QWC only award first mark if 'electron'/ 'electrons'/ 'electronic') is spelled correctly at least once
	(b)		left gaps/spaces/blanks (in the order) ✓	1	
	(c)	(i)	$Ga(s) + As(s) \rightarrow GaAs(s)$ equation \checkmark state symbols \checkmark	3	ALLOW ½As₂ and ½Ga₂ and ¼As₄ Equation MUST be to form one mole of GaAs
			Standard state is solid for both elements (and compound) because $T_{\rm m}$ is greater than 298 (K) \checkmark		298 must be mentioned (or indicated, eg in subtraction sums)
		(ii)	$\Delta H_1 = \Delta H_2 + \Delta H_3$ \checkmark <u>energy</u> (change) /enthalpy (change)/ ΔH (of a particular reaction) independent of route $AW \checkmark$	3	ALLOW $\Delta H_1 = \Delta H_3 + \Delta H_2$ OR $\Delta H_2 = \Delta H_1 - \Delta H_3$ OR $\Delta H_3 = \Delta H_1 - \Delta H_2$ NOT arrow (\rightarrow) instead of =
			providing initial and final <u>conditions</u> the same/ <u>conditions</u> remain the same ✓		NOT 'starting and finishing points same' ALLOW '(providing) all done under standard conditions'

Q	uesti	on		Ans	swer		Marks	Guidance
4	(d)		3 outer electron In group 3 ✓	ons ✓			2	ACCEPT 4s ² 4p ¹ or s ² p ¹ for first point ALLOW group13 No ecf
	(e)	(i)	sf ✓	39.9 x 71) ÷ 100			2	ALLOW sig fig mark for any 3 sig fig answer derived correctly from a calculation
		(ii)	isotope 69Ga 71Ga	number of protons 31 31	number of electrons 31 31	number of neutrons 38 40	2	One mark for each completely correct row No ecf's
						TOTAL	17	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

