

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
* 5 3	MATHEMATICS		0581/41
8 8 8	Paper 4 (Extended)	October/November 2011 2 hours 30 minutes
1 0	Candidates answer	r on the Question Paper.	2 hours 30 minutes
7 8 1 *	Additional Materials	s: Electronic calculator Mathematical tables (optional)	Geometrical instruments Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 130.

This document consists of 16 printed pages.

1	(a)		dullah and Jasmine bought a car for \$9000. dullah paid 45% of the \$9000 and Jasmine paid the rest.		For Examiner's Use
		(i)	How much did Jasmine pay towards the cost of the car?		
			Answer(a)(i) \$	[2]	
		(ii)	Write down the ratio of the payments Abdullah : Jasmine in its simplest form.	[-]	
			Answer(a)(ii) :	[1]	
	(b)	Ab	t year it cost \$2256 to run the car. dullah, Jasmine and their son Henri share this cost in the ratio 8:3:1. culate the amount each paid to run the car.		
			Answer(b) Abdullah \$		
			Jasmine \$		
			Henri \$	[3]	
	(c)	(i)	A new truck costs \$15000 and loses 23% of its value each year . Calculate the value of the truck after three years.		
			Answer(c)(i)	[3]	
		(ii)	Calculate the overall percentage loss of the truck's value after three years.		
			Answer(c)(ii)	%[3]	

	Height (<i>h</i> metres)	Frequency	
	$1.3 < h \le 1.4$	4	
	$1.4 < h \le 1.5$	13	
	$1.5 < h \le 1.6$	33	
	$1.6 < h \le 1.7$	45	
	$1.7 < h \le 1.8$	19	
	$1.8 < h \le 1.9$	6	
a) (i) (ii)	Write down the modal class. Calculate an estimate of the mean height.	<i>Answer(a)</i> (i)Show all of your working.	m [1]
	s from this swimming club are chosen at r culate the probability that	<i>Answer(a)</i> (ii)andom to swim in a race.	m [4]
		andom to swim in a race.	m [4]
Calo	culate the probability that	andom to swim in a race.	m [4]
Calo	culate the probability that	andom to swim in a race.	m [4]
Calo	culate the probability that	andom to swim in a race. than 1.8 metres, <i>Answer(b)</i> (i)	
Calo	culate the probability that the height of the first girl chosen is more	andom to swim in a race. than 1.8 metres, <i>Answer(b)</i> (i)	
Calo	culate the probability that the height of the first girl chosen is more	andom to swim in a race. than 1.8 metres, <i>Answer(b)</i> (i)	
Calo	culate the probability that the height of the first girl chosen is more	andom to swim in a race. than 1.8 metres, <i>Answer(b)</i> (i)	

The table shows information about the heights of 120 girls in a swimming club. 3

For Examiner's Use

<i>h</i> ≤ 1.3	0
<i>h</i> ≤ 1.4	4
<i>h</i> ≤ 1.5	17
<i>h</i> ≤ 1.6	50
<i>h</i> ≤ 1.7	
$h \le 1.8$	114
$h \le 1.9$	
$n \le 1.9$	
cumulative frequency graph on	the grid.

<u></u>	- * - • - • - • - • - • - • - • - • - •
┝╍╬╍╬╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍╫╍	·☆·∦·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓·↓

(c) (i) Complete the cumulative frequency table for the heights.

Height (h metres)

For Examiner's Use

[1]

© UCLES 2011

(ii) Draw

120

110

100

90

80

70 ·

60 ·

50

40

30

20

10

0

1.3

(d) Use your graph to find

(i) the median height,

(ii) the 30th percentile.

Cumulative

frequency

0581/41/O/N/11

1.6

Height (m)

1.5

1.4

1.7

Answer(d)(i)

Answer(d)(ii)

1.8

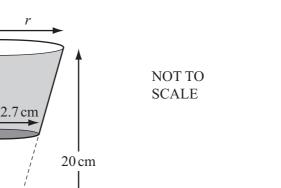
.....

.....

[Turn over

 $\rightarrow h$

[3]


m [1]

m [1]

1.9

Cumulative frequency

4

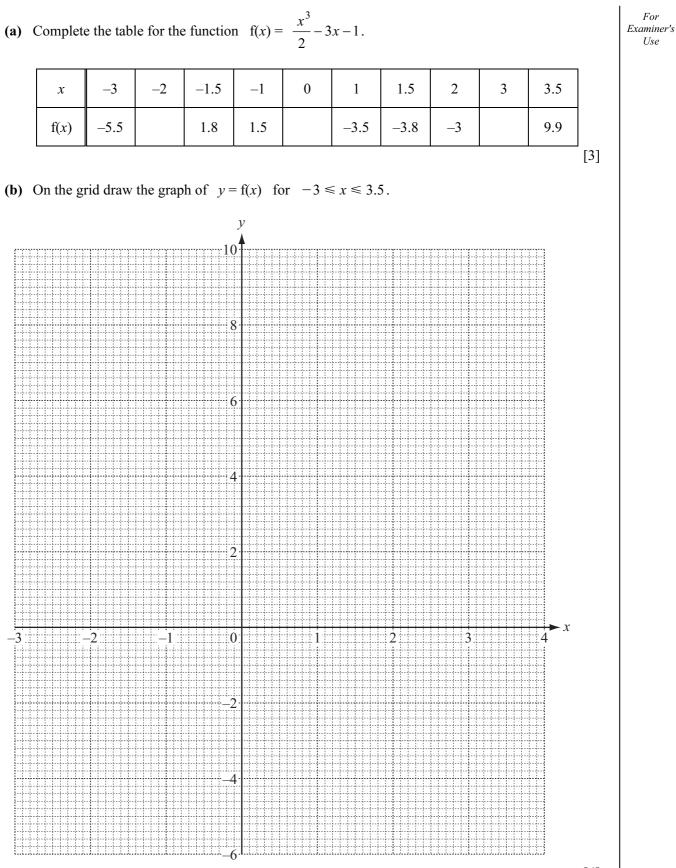
For Examiner's

Use

[2]

The diagram shows a plastic cup in the shape of a cone with the end removed. The vertical height of the cone in the diagram is 20 cm. The height of the cup is 8 cm. The base of the cup has radius 2.7 cm.

(a) (i) Show that the radius, r, of the circular top of the cup is 4.5 cm.

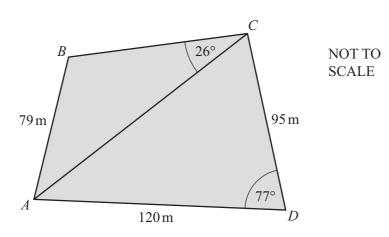

Answer(a)(i)

8 cm

(ii) Calculate the volume of water in the cup when it is full. [The volume, V, of a cone with radius r and height h is $V = \frac{1}{3} \pi r^2 h$.]

Answer(a)(ii) cm^{3} [4]

(b)	(i)	Show that the slant height, s , of the cup is 8.2 cm. Answer(b)(i)			For Examiner's Use
	(ii)	Calculate the curved surface area of the outside of the cup. [The curved surface area, A, of a cone with radius r and slant height l is $A = \pi r l$.]		[3]	
		[The curved surface area, A , of a cone with factors r and shaft height t is $A - krt.$]			
		Answer(b)(ii)	cm ²	[5]	


[4]

8

5

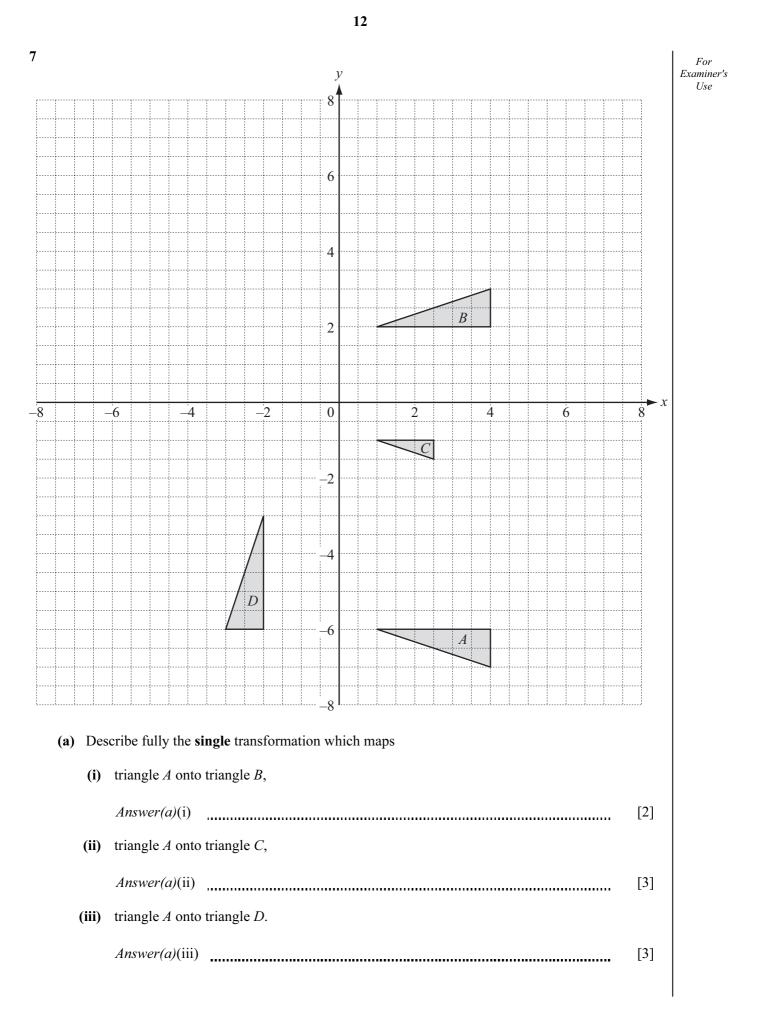
(c) Use your graph to For Examiner's Use(i) solve f(x) = 0.5, $Answer(c)(i) x = \qquad \text{or } x =$ or *x* = [3] (ii) find the inequalities for k, so that f(x) = k has only 1 answer. Answer(c)(ii) k <*k* > [2] (d) (i) On the same grid, draw the graph of y = 3x - 2 for $-1 \le x \le 3.5$. [3] (ii) The equation $\frac{x^3}{2} - 3x - 1 = 3x - 2$ can be written in the form $x^3 + ax + b = 0$. Find the values of *a* and *b*. Answer(d)(ii) a = and b =[2] (iii) Use your graph to find the **positive** answers to $\frac{x^3}{2} - 3x - 1 = 3x - 2$ for $-3 \le x \le 3.5$. $Answer(d)(iii) x = \qquad \text{or } x =$ [2]

9

The quadrilateral *ABCD* represents an area of land. There is a straight road from *A* to *C*. AB = 79 m, AD = 120 m and CD = 95 m.Angle $BCA = 26^{\circ}$ and angle $CDA = 77^{\circ}.$

(a) Show that the length of the road, AC, is 135 m correct to the nearest metre.

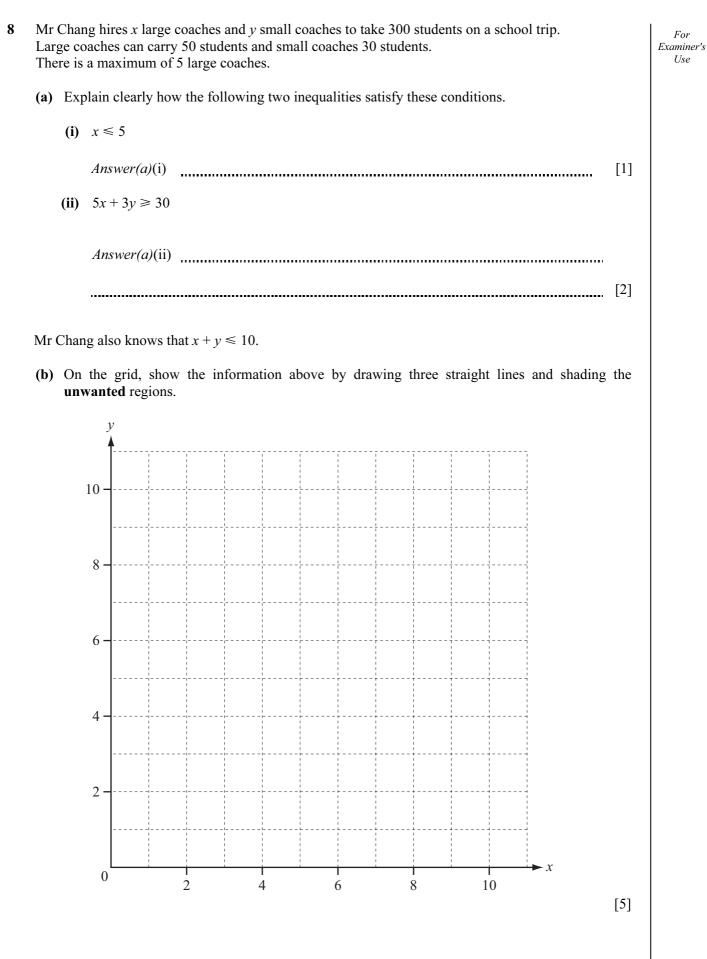
Answer(a)


(b) Calculate the size of the **obtuse** angle *ABC*.

[4]

Answer(b) Angle ABC = [4]

(c)	A straight path is to be built from <i>B</i> to the nearest point on the road <i>AC</i> . Calculate the length of this path.	For Examiner's Use
	<i>Answer(c)</i> m[3]	
(d)	Houses are to be built on the land in triangle <i>ACD</i> . Each house needs at least 180 m ² of land. Calculate the maximum number of houses which can be built. Show all of your working.	
	$Answer(d) \qquad [4]$	



(b)	Draw the image of (i) triangle <i>B</i> after a translation of $\begin{pmatrix} -5\\ 2 \end{pmatrix}$,	[2]	For Examiner's Use
	(ii) triangle <i>B</i> after a transformation by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.	[3]	
(c)	Describe fully the single transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.		
	Answer(c)	[3]	

13

© UCLES 2011

			13	
	(c)	A la	arge coach costs \$450 to hire and a small coach costs \$350.	For Examiner's
		(i)	Find the number of large coaches and the number of small coaches that would give the minimum hire cost for this school trip.	
			Answer(c)(i) Large coaches	
			Small coaches [2]]
		(ii)	Calculate this minimum cost.	
			<i>Answer(c)</i> (ii) \$ [1]]
				-
9	(a)	72	$= 2 \times 2 \times 2 \times 3 \times 3$ written as a product of prime factors.	
		(i)	Write the number 126 as a product of prime factors.	
			$Answer(a)(i) \ 126 = $ [2]	1
		(ii)	Find the value of the highest common factor of 72 and 126.	-
			Answer(a)(ii) [1]
		(iii)	Find the value of the lowest common multiple of 72 and 126.	
			Answer(a)(iii) [2	,
			2115wer (a) (11) [2	
			The rest of question 9 is printed on the next page.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

0581/41/O/N/11