MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0581	23

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	112	2	M1 for $240 \div (7+8) \times 7$
2	(a) 211 cao	1	
	(b) 216 cao	1	
3	(x =) -3 $(y =) 5$	2	M1 for correctly eliminating one variable
4	$\frac{16}{81}$ cao	2	B1 for $\frac{81}{16}$, $\frac{k}{81}$, $\frac{16}{k}$ or $(2/3)^4$ seen
5	(a) 1.28×10^5	1	
	(b) 128 500	1	
6	882	2	M1 800 × 1.05 × 1.05
7	$\frac{1}{9}, \frac{1}{4}$	M1	Both fractions seen
	$\left(\frac{1}{9} + \frac{1}{4} = \right)\frac{4}{36} + \frac{9}{36} = \frac{13}{36}$	E1	Both fractions over a common denominator and added to give $\frac{13}{36}$
8	0.186	2	B1 for 2.477 to 2.478 or 13.29 seen
9	(a) 5 or -5	1	
	(b) -0.714 (-0.7143 to -0.7142) or $-\frac{5}{7}$	2	M1 for $-2 + 2 + 1 - 3 - 1 - 2$ and $\div 7$
10	9 h 12 min	3	M1 for 8 × 1.15 A1 for 9.2 B1 ft independent for their 9.2 correctly converted into hours and minutes
11	x(p-2q)(p+2q)	3	M2 for $(px - 2qx)(p + 2q)$ or $(p - 2q)(px + 2qx)$ or M1 for $x(p^2 - 4q^2)$
12	225.(23112)	3	M2 for (800 ÷ 3.8235 – 150) × 3.8025 M1 for 800 ÷ 3.8235
13	68.5 www	3	M2 for 67.13 ÷ 0.98 or M1 for 67. 13 is 98%
14	$66\frac{2}{3}$ or 66.7 www	3	M2 for $\frac{\frac{4}{3}\pi r^3}{\pi r^2(2r)}$ (× 100) or M1 for $\pi r^2(2r)$
15	$p = \frac{c}{a - x}$	3	M1 one correct move M1 second correct move M1 third correct move marked on answer line

F	age 3	Mark Scheme: Teach			Syllabus	Paper
		IGCSE – October/Nov	ember	2011	0581	23
16	(a) $t = 2$	\sqrt{I}	2	M1 for $t = k$	\sqrt{l}	
	(b) 3		1ft	Ft dependent on using $t = k\sqrt{l}$		
17	(ii)	7	1			
	(ii) ·	4	1			
	(b) $\frac{7}{13}$	oe	1ft	Ft their Venn diagram or their (a)(i)/13		
18	$\frac{1-5x+x}{x(1-2x)}$	$\frac{x^2}{x^2}$ or $\frac{1-5x+x^2}{x-2x^2}$	4	M1 for $(1-x)(1-2x) - x(2+x)$ seen B1 for $1-x-2x+2x^2$ or $1-3x+2x^2$ seen B1 for $x(1-2x)$ oe as a common denominator		
19	4.32		4	M1 for $\frac{50}{360} \times \pi \times 9^2$		
					$9^2 \times \sin 50$ acting their triangle dent on at least M1	
20	(a) (i)	2×2	1			
	(ii)	(20)	1	Brackets esse	ntial	
	(b) $\frac{1}{2} \begin{pmatrix} 2 \\ - \end{pmatrix}$	$\begin{pmatrix} 4 & -3 \\ 2 & 2 \end{pmatrix}$ oe	2	M1 for $\frac{1}{2} \begin{pmatrix} a \\ c \end{pmatrix}$	$ \begin{pmatrix} b \\ d \end{pmatrix} \text{or } k \begin{pmatrix} 4 & - \\ -2 & 2 \end{pmatrix} $	$\binom{3}{2}$ seen
21	(a) 84(.0	0)	4	M2 for cos (.	$) = \frac{2.7^2 + 4.5^2 - 5}{2 \times 2.7 \times 4.5}$	$\frac{5^2}{-}$ or
					$2.7^2 + 4.5^2 - 2 \times 2.7^5$ (implied by cor	
	(b) 136		1ft	220 – their (a)	
22	(a) Angl	es in same segment	1			
	(b) (i)	8.2(0)	2	M1 for $\frac{CX}{3.84}$ =	$=\frac{9.4}{4.4}(=2.136)$ oe	
	(ii)	24.7	2	M1 for $\frac{\Delta}{5.41}$ =	$=\left(\frac{9.4}{4.4}\right)^2 (= 4.564)$	0e
23	(a) 0.133	(3) or $\frac{2}{15}$	2	M1 for 40 ÷ 3	300 seen	
	(b) $33\frac{1}{3}$	or 33.3	3		inder graph attempt ct total area stateme	