CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0581 MATHEMATICS

0581/43 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working art anything rounding to soi seen or implied

Qu.			Answers	Mark	Part Marks
1	(a)	(i)	[0]9 15 [am]	1	Any acceptable form of time
		(ii)	64.9 or 65.[0] or 64.92 to 64.98	2	M1 for 92 ÷ (1 and 25 mins) or 92/85 × 60 oe or 92 ÷ (1.41 to 1.42)
		(iii)	11.76or 11.8	1	
		(iv)	80	3	M2 for 92 ÷ 1.15 oe or M1 for 115% associated with 92
	(b)	(i)	$150 \div (11 + 16 + 3)$ or 150×3 oe	M1	Correct first step
			then \times 3 or \div 30	E1	Correct conclusion
		(ii)	11:9 final answer	2	M1 for 8.25 : (15 – 8.25) oe For M1 e.g. allow 1 : 0.818 [0.8181 to 0.8182] or 1.22 : 1 [1.222] After M0, SC1 for 9 : 11 as final answer
2	(a)	(i)	Image at (-3, 1), (-7, 7), (-3, 7)	2	SC1 for translation $\begin{pmatrix} -11 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -1 \end{pmatrix}$
		(ii)	Image at $(-4, -1)$, $(-4, -4)$, $(-2, -4)$	2	SC1 for enlargement factor 0.5 and correct orientation
					In each part of (b) must be one transformation only – if more then lose all marks for that part
	(b)	(i)	Reflection, $y = 1$	2	B1 B1 independent
		(ii)	Rotation, $(3, 2)$, 180 oe or enlargement, $(3, 2)$, $(factor) - 1$	3	B1 B1 independent
		(iii)	Stretch, (factor) 0.5, Invariant line <i>y</i> -axis or $x = 0$	3	B1 B1 B1 independent – must be clear on invariant line

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

	(c)	$\begin{pmatrix} 0.5 & 0 \\ 0 & 1 \end{pmatrix}$	2 ft	ft their factor in (b)(iii) only if stretch not 0 or 1 SC1 for $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$ $[k \neq 0 \text{ or 1}]$ or $\begin{pmatrix} 1 & 0 \\ 0 & 0.5 \end{pmatrix}$ ft their factor only if stretch in (b)(iii)
3	(a)	7.407 or 7.41	1	
	(b)	9	2	M1 for $1080 \div (12 \times 10)$ oe
	(c)	(i) 6.36 to 6.37 www	3	M2 for $\sqrt[3]{\frac{1080}{\frac{4}{3}\pi}}$ oe or M1 for $\frac{1080}{\frac{4}{3}\pi}$ oe [257.7 to 258.7] Accept 4.18 to 4.19 for 4/3 π
		(ii) 508 to 510	2	M1 for $4 \times \pi \times (\text{their } (\mathbf{c})(\mathbf{i}))^2$
	(d)	$\sqrt{2}$ or 1.41 [1.414] www	2	Allow over 1 or $\sqrt{2}$: 1 etc M1 for $(R/r)^2 = 2$ oe or $[R^2 =] (2 \times their (\mathbf{c})(\mathbf{i}))/4 \pi$ or $[R^2 =] 2 \times (their (\mathbf{c})(\mathbf{i}))^2$
4	(a)	5, -1	2	B1 B1
	(b)	12 points plotted ft	P3ft	P2ft for 10 or 11, P1ft for 8 or 9
		Smooth curve through at least 12 points	C1	In absence of plot[s], allow curve to imply plot[s]. No ruled sections
		Two separate branches	B1	Not touching <i>y</i> -axis
	(c)	(i) 0.55 to 0.65	1	
		(ii) 0.65 to 0.75	2	M1 for $y = 3x$ drawn (ruled) to cross curve
	(d)	$\frac{1}{3}$	2	Accept 0.333[3] or 0. $\dot{3}$ M1 for $\frac{2}{x^2} - 3x = 3x$ or better

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

	(e) (i) Ruled line through $(-1, 5)$ and $(3, -9)$	1	
	(ii) $y = -3.5x + 1.5$ oe final answer	3	B2 for $y = kx + 1.5$ [$k \ne 0$] oe or $y = -3.5x + d$ oe B1 for gradient = -3.5 oe accept integer/integer or y = kx + [1.4 to 1.6] oe SC2 for answer $-3.5x + 1.5$ [no ' $y =$ ']
	(iii) Tangent	1	
5	(a) 0.57	B4	Condone use of other variables M1 for $2w+3l = 3.6$ oe and M1 for $l = w+0.25$ oe A1 for correct $aw = b$ or $cl = d$ or M2 for $2w+3(w+0.25) = 3.6$ oe or $2(l-0.25)+3l = 3.6$ oe or $M1$ for $w+0.25$ or $l-0.25$ seen A1 for $2w+3w=3.6-0.75$ or better or $2l+3l = 3.6+0.5$ or better $l=0.82$ implies M2A1 trial & error scores B4 or zero accept answer 57 if written 57 cents after M0, SC3 if answer 57
	(b) (i) $\frac{5}{x} + \frac{6}{x+2} = 1$ oe	M2	e.g. $\left(1 - \frac{5}{x}\right)(x+2) = 6$ M1 for $\frac{5}{x}$ seen or $\frac{6}{x+2}$ seen or $xy = 5$ and $(x+2)Y = 6$ oe or $xy = 5$ and $(x+2)(1-y) = 6$ oe
	5(x+2) + 6x = x(x+2) oe $5x + 10 + 6x = x^2 + 2x$ oe $0 = x^2 - 9x - 10$	A1 E1	e.g. $(x-5)(x+2) = 6x$ Allow $5x+10+6x = x^2 + 2x$ and allow all over correct denominator but must see this line One correctly expanded line seen No errors or omissions
	(ii) $(x-10)(x+1)$	2	SC1 for $(x + a)(x + b)$ where $ab = -10$ or $a + b = -9$
	(iii) 21	2ft	ft a positive x into $2(x + \frac{5}{x})$ M1 for 0.5 seen or $5 / their$ positive root

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

	(c) (i) $(2x+3)^2 = (x+3)^2 + 5^2$ oe	M1	
	12.6.16.10	B1	for $4x^2 + 6x + 6x + 9$ or $4x^2 + 12x + 9$
	$4x^{2} + 6x + 6x + 9 =$ $x^{2} + 3x + 3x + 9 + 25 \text{ oe}$	B1	for $x^2 + 3x + 3x + 9$ or $x^2 + 6x + 9$
	$3x^2 + 6x - 25 = 0$	E1	No errors or omissions
	(ii) $\frac{-6 \pm \sqrt{6^2 - 4(3)(-25)}}{2(3)}$	B2	B1 for $\sqrt{6^2 - 4(3)(-25)}$ or better seen
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ oe B1 for $p=-6$ and $r=2(3)$ or better
	– 4.06, 2.06 final answer	В2	B1 B1 After B0 B0 SC1 for - 4.1 and 2.1 or - 4.055 and 2.055 or -4.06 and 2.06 seen
	(iii) 12.63 to 12.65 or 12.6 or 12.7	2ft	ft (a positive $x + 3$) × 2.5 SC1 for $0.5 \times their$ positive value × 5 written
6	(a) $\sin [] = \frac{130}{0.5 \times 16 \times 25}$ oe	M2	M1 for $0.5 \times 16 \times 25 \times \sin [] = 130$ oe but if 40.54 reached from implicit method then M2
	40.54 = 40.5	E1	Must see 40.54 and conclusion Use of 40.5 alone in implicit expression scores M1 .
	(b) 16.51 to 16.53 or 16.5 www	4	M2 for $16^2 + 25^2 - 2 \times 16 \times 25 \times \cos(40.5)$ oe [allow 40.54]
			(M1 for cos $40.5 = \frac{16^2 + 25^2 - AC^2}{2 \times 16 \times 25}$) [allow 40.54] A1 for 272.6 to 273.0(which implies M2)
	(c) 10.39 to 10.4[0]	2	M1 for $0.5 \times 25 \times \text{distance} = 130$ or $\frac{dist}{16} = \sin[40.5]$ oe [allow 40.54]

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

7	(a) (i) $\frac{2}{20}$ oe (ii) $\frac{6}{20}$ oe	2	Accept fraction, %, dec equivalents [3sf or better] throughout but not in ratio or words Isw incorrect cancelling or converting and do not accept ratios or words Pen -1 once for 2sf answers ft probability if $0 M1 for \frac{2}{5} \times \frac{1}{4} oe M2 for 2 \times \frac{1}{5} \times \frac{1}{4} + 2 \times \frac{2}{5} \times \frac{1}{4} oe M1 for pairs 1, 4 and 2, 3 clearly identified and no other incorrect pairings$
	(iii) $\frac{14}{20}$ oe	1ft	or for one appropriate product isw ft 1 – their (a)(ii) or recovery to correct ans
	(b) (i) 7 (ii) 42	1	
	(iii) $\frac{7}{50}$	1ft	ft their 7/50 from Venn diagram or correct recovery
	(iv) $\frac{7}{9}$ [0.777[7] or 0.778]	1ft	ft their 7/their 9 from Venn diagram or correct recovery
8	(a) 24	3	M2 for 24 at <i>B</i> or 128 at <i>X</i> and 28 at <i>D</i> . or M1 for 28 at <i>D</i> or 128 at <i>X</i> allow on diagram
	(b) 5 www	3	M2 for $360 - 22x = 2 \times 25x$ oe or better or $22x = 2(180 - 25x)$ oe or better or $11x + 25x = 180$ oe or better or M1 for P = 11x or reflex $O = 360 - 22x$ or reflex $O = 50xallow on diagram$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

(c)	6.32	to 6.3	34 www		5	B1 for <i>OLM</i> 90° (seen or implied)
						allow on diagram
						and M1 for $LM = 8 \tan 44 \ [7.7255]$
						or $OM = 8 \div \cos 44 [11.1213]$
						and M1dep on previous M for $0.5 \times 8 \times their LM$
						or $0.5 \times 8 \times (their\ OM) \sin 44$
						and M1 for $\frac{44}{360} \times \pi \times 8^2$ oe [24.5 to 24.6]
(a)	(i)	72			1	
	(ii)	68			1	
	(iii)	8			1	
	(iv)	164			2	M1 for 36 seen may be on the graph
(b)	(i)	11			1	
	(ii)	35, 45	5, 55, 65, 75, 85	5	M1	At least 5 correct mid - values soi
		(9 × 3	35 + their 11 × .	45 +	M1	$\sum fx$ where x is in the correct interval allow one
		`				further slip
		÷ 200) or their $\sum f$		M1dep	Depend on second method
		60.05	Cor 60 0 or 700	01 cac	Δ1	isw conversion to mins/secs & reference to classes
		09.73	, or o ₂ , ₂ or 70[.	oj cao	AI	SC2 for correct answer without working
(a)	A	1,	13 - 2n	oe	3	B1, B2 (M1 for $k-2n$) oe
` /	В	36,	n^2	oe	2	B1, B1
	C	42,	n(n + 1)	oe	3	B1 , B2 (B1 for a quadratic in <i>n</i>)
	D			oe	2	B1, B1
	Ε			oe	2ft	B1ft their D – their C , B1ft their D – their C only if both in terms of n
	(a)	(a) (i) (ii) (iv) (b) (i) (ii) (a) A B C D	(a) (i) 72 (ii) 68 (iii) 8 (iv) 164 (b) (i) 11 (ii) 35, 4 (9 × 3 16 × 75 + ÷ 200 69.95 (a) A 1, B 36, C 42, D 729,	(ii) 68 (iii) 8 (iv) 164 (b) (i) 11 (ii) 35, 45, 55, 65, 75, 83 $(9 \times 35 + their 11 \times 16 \times 55 + 28 \times 65 + 75 + 28 \times 85) \qquad [1]$ $\div 200 \text{ or } their \sum f$ $69.95 \text{ or } 69.9 \text{ or } 70[.$ (a) $A = 1, 13 - 2n$ $B = 36, n^2$ $C = 42, n(n+1)$ $D = 729, 3^n$	(a) (i) 72 (ii) 68 (iii) 8 (iv) 164 (b) (i) 11 (ii) 35, 45, 55, 65, 75, 85 $(9 \times 35 + their 11 \times 45 + 16 \times 55 + 28 \times 65 + 108 \times 75 + 28 \times 85) [13990]$ $\div 200 \text{ or } their \sum f$ $69.95 \text{ or } 69.9 \text{ or } 70[.0] \text{ cao}$ (a) $A = 1, 13 - 2n \text{oe}$ $B = 36, n^2 \text{oe}$ $C = 42, n(n+1) \text{oe}$ $D = 729, 3^n \text{oe}$	(a) (i) 72 (ii) 68 1 (iii) 8 (iv) 164 2 (b) (i) 11 (ii) 35, 45, 55, 65, 75, 85 M1 $(9 \times 35 + their 11 \times 45 + 16 \times 55 + 28 \times 65 + 108 \times 75 + 28 \times 85) [13990]$ $\div 200 \text{ or } their \sum f$ M1dep 69.95 or 69.9 or 70[.0] cao M1dep 69.95 or 69.9 or 70[.0] cao A1 (a) A 1, 13 - 2n oe B 36, n^2 oe C 42, $n(n+1)$ oe B 3 O 729, 3^n oe 2

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	43

(b) (i) -187	1ft	ft if A is linear
(ii) 10 100	1ft	ft if C is quadratic
(c) 8	1	
(d) 58 939	1	