MARK SCHEME for the October/November 2012 series

0581 MATHEMATICS

0581/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	soon or implied

soi seen or implied

Qu.	Answers	Mark	Part Marks
1	(a) (i) 5	2	M1 for $\frac{3 \times 15}{(5+3+1)}$
	(ii) 108	2	M1 for $60 \times \frac{9}{5}$ oe
	(b) Correct conversion of money $J \times 0.718$ or $A \div 0.718$	M1	Correct conversion of money soi by 146.83[1] rounded or truncated to 3sf or 134.26[1] rounded or truncated to 3 sf if done 1 st
	Correct equalising of weights e.g. $J \times \frac{2[0]}{3[0]} \qquad \text{or } A \times \frac{3[0]}{2[0]}$ or J ÷ 3 and A ÷ 2 or J ÷ 30 and A ÷ 20	M1	Correct equalising of weights or money Accept other methods that give a pair of comparable values for method and accuracy marks This mark can be implied by values seen correct to 3 sf or better
	97 to 98 or 201[.39] and Ann <u>48.9[4]</u> and 48.2[0] and Ann or 68[.16] to 68.[2] and <u>67[.13]</u> and Ann <u>4.88 to 4.9</u> and 4.82 and Ann or 6.8[1] to 6.82 and <u>6.7[1]</u> and Ann www	A2	The underlined values imply M1 for the money conversion Or A1 for 97 to 98 or 201[.39] or a correct pair of values with wrong/no conclusion
	(c) 302 Final answer	3	M1 for 60 × 60 × 4 soi by 14400 or figs 6048 or figs 3024 and M1 for ÷ (1000 × 20) soi Answer 302.4 implies M2
	(d) 13.6[0]	3	M2 for $\frac{15.3[0]}{1.125}$ oe or M1 for 15.3[0] associated with 112.5%
	(e) 12	1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

2	(a) (i) $[\cos A=]\frac{32^2+64^2-43^2}{2\times32\times64}$	M2	M1 for correct implicit version $43^2 = 32^2 + 64^2 - 2 \times 32 \times 64\cos A$
	37.00[]	A2	A1 for $\frac{3271}{4096}$ or 0.798 to 0.799
	(ii) 616 or 616.2 to 616.4	2	M1 for $\frac{1}{2} \times 32 \times 64 \times \sin 37$ oe
	(b) $[\sin ADC =] \frac{64\sin 55}{70}$ so by 48.49rounded or truncated or $x^2 - (73.41 \text{ to } 73.42) x - 804 [= 0]$	M2	M1 for correct implicit version of sine rule or cosine rule with <i>x</i>
	$\frac{70\sin(125 - their 48.5)}{\sin 55}$ or $64^2 + 70^2 - 2 \times 64 \times 70\cos(125 - their 48.5)$	M2	M1 for implicit sine rule or cosine rule or for one error in quadratic solution
	or solving their 3 term quadratic equation		Ignore negative solutions
	228 or 228.0 to 228.1 www	A2	A1 for 83.0 to 83.1
3	(a) (i) $2(2x+1)(x-5)$ final answer	3	B1 for $2(2x^2 - 9x - 5)$ and B1 for $(2x + 1) (x - 5)$ or SC2 for expansion of brackets gives 3 correct terms e.g. $(2x + 1) (2x - 10)$ or $(4x + 2)(x - 5)$ or SC1 for expansion of brackets gives 2 correct terms e.g. $(2x - 1)(2x + 10)$ or $(4x - 2)(x - 4)$
	(ii) -1/20e, 5	1ft	Correct or ft their 2 brackets
	(b) $\frac{[]7 \pm \sqrt{([-]7)^2 - 4(2)(-10)}}{2(2)}$	B2	B1 for $\sqrt{([-]7)^2 - 4(2)(-10)}$ [= $\sqrt{129}$] If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$,
			r $rB1 for -7 and 2(2) or better$
	–1.09 , 4.59 final answers	B1B1	If B0 , SC1 for -1.1 and 4.6 as final answers or -1.089 and 4.589 as final answers or -1.09 and 4.59 seen

	Page 4	Mark Schen	Syllabus	Paper		
		IGCSE – October/November 2012			0581	42
	· ·	$\frac{-10}{(x-1)(x-2)} \text{ or } \frac{-10}{3x^2 - 7x + 2}$ Final answer	3	and B1 for	g bracket[s]	
4	(a) (i)	148	2	B1 for tan May be or	gent/radius = 90° s n diagram	seen.
	(ii)	74	1ft	ft their (a)	$(\mathbf{i}) \div 2$ dep on (\mathbf{a}))(i) < 180
	(iii)	21	2		0 – 90 – 143 – 32 quadrilateral <i>AOC</i>	
	(iv)	20.9 or 20.92	3		an 74 oe or explic implicit version	it sine rule
	(b) (i)	51	2	M1 for <i>AE</i>	$BC = 90^\circ$. May be	on diagram.
	(ii)	56	2		+ 17 or 180 - (73] 180 - (39 + 17)	+ <i>their</i> 51)
	(iii)	<u>Angle</u> at <u>centre twice</u> oe angle at <u>circumference</u>	1			
	(iv)	22	1			
	(v)	68.3 or 68.27 to 68.29	3	Allow $\frac{32}{15}$	$\frac{6}{5}\pi$ as final answer	
				M2 for $\frac{36}{3}$	$\frac{60-34}{360} \times 2\pi \times 12$	
				or $2\pi \times 12$	$-\frac{34}{360} \times 2\pi \times 12$	
				or $\pi \times 12$	$+ \frac{180-34}{360} \times 2\pi \times 10^{-10}$	12
				or M1 for	use of $\frac{\theta}{360} \times 2\pi \times$	12
				for $\theta \neq mu$	ltiples of 90°	

	Page 5	Mark Scheme			Syllabus	Paper
		IGCSE – October/Nov	ember 20	012	0581	42
5	(6 × 1 140 -	0, 100, 140, 180, 220 20 + 10 × 60 + 28 × 100 + 76 × + 22 × 180 + 16 × 220) 1640)	M1 M1	At least 5 correct $\sum fm$ where m either end of int allow one further	is in the correction of the co	s soi ect interval, allow
		rectangular bar of height 0.2 rectangular bar of height 1.05 correct widths of 80 and 120	M1 A1 1, 1 1ft 1ft	Depend on seco SC2 for 137 or Strict ft from <i>th</i> Strict ft from <i>th</i>	better ww eir 16	
	(c) 135	with no gaps	1 3	M2 for $\frac{15 \times 136}{15}$ or M1 for 15 × [20]		30
6	(b) (i)	or 5.830 to 5.831 Vector drawn from <i>P</i> to <i>Q</i> at (14, 3)	2	Allow $\sqrt{34}$ as f M1 for $(3^2 + ([-Must have arrow$	-]5)²)	rection
	(c) $3a - (7)^{-1}$	Points at (8, 11) and (13, 14) 2 b	1, 1 2 1	SC1 for points a M1 for a – 3b + Allow mixtures	$-2\mathbf{a} + \mathbf{b}$ or \overline{CL}	$\vec{D} + \vec{DE}$ oe
	(d) $\begin{pmatrix} 1 \\ -6 \end{pmatrix}$ (e) (i)	$\mathbf{b} - \mathbf{c}$ oe	1	Allow unsimpli	fied	

	Page 6		Mark Scheme			Syllabus 0581	Paper
			IGCSE – October/Nov	IGCSE – October/November 2012			42
		(ii)	MX = MB + BX $\pm \frac{1}{4}$ or $\pm \frac{3}{4}$ used	M1 M1	Any order For a corr		
		³ /4 c	$-\frac{1}{4}\mathbf{b} \text{ or } \frac{1}{4}(3\mathbf{c}-\mathbf{b}) \text{ or } \frac{3\mathbf{c}}{4}-\frac{\mathbf{b}}{4}$	A2	Any corre	$\mathbf{b} + \frac{3}{4} (\mathbf{c} - \mathbf{b})$ oe ect unsimplified ored SC2 for $\frac{2}{3c}$ -	-1/6 b
7	(a)	(i)	$x \ge 5$		B1 for eac	ch correct inequality	y
			$y \leq 8$		Penalise t inequalitie	he first occurrence es used	only when strict
			$x + y \le 14$				
			$y \ge \frac{1}{2}x$ oe	4			
		(ii)	x = 5 ruled y = 8 ruled x + y = 14 ruled $y = \frac{1}{2} x \text{ ruled}$ region indicated	1 1 1 1 1dep	region Check at i Check at i		·
	(b)	(i)	480	2		$x + 45 \times y$ where nd (x, y) is in their of	
		(ii)	6, 8	1	In correct	order	
8	(a)	(i)	Tangent drawn at $x = 2.5$	1	daylight,	e tangent at correct or chord, crossing <i>x</i> extended if necessa	-axis between 1.7,
		(ii)	1.55 to 2.2	2dep		at on correct tanger at $x = 2.5$	nt or close attempt
					M1dep att	empts y step / x ste	þ
					with correc		
	(b)	1.42	2 to 1.45 and 2.8 to 2.82	1, 1			
	(c)	(i)	4.4, 2.5, 1.5	2	B1 for 2 c	correct values	

Pa	age 7	Mark Schen	Syllabus	Paper		
		IGCSE – October/Nov	ember 20)12	0581	42
		6 correct points plotted curve through all 6 points and correct shape	P2ft C1	Smooth cu	or 5 correct plots urve but last 3 point e of plot[s], allow cu	
	(iii)	0.75 to 0.9	1	plot[s] Solutions	may be in any orde	r
		1.6 to 1.7 2.6 to 2.7	1			
9	(a) (i)	F 5 (11) 7 2 S	2		utside of circles in a e of 5, 11, 7 correct	
	(ii) (iii)		1ft 1	ft their 2 -	- their 7	
	(iv)		1ft	ft their 11	from diagram / 25	
	(v)	$\frac{42}{600}$ oe $=\frac{7}{100}$	2ft	ft <i>their</i> 7 f M1 for <u>th</u>	ect cancelling from diagram for number $\frac{teir7}{25} \times \frac{their(7-1)}{24}$ ored, SC1 for $\frac{their}{25}$	

Р	age 8		Mark Schen	Syllabus	Paper		
			IGCSE – October/Nov	ember 20	12	0581	42
	(b) ($F = \begin{bmatrix} 5 & 7 & 12 \\ G & 4 & 1 \end{bmatrix}$ $F = \begin{bmatrix} 5 & 4 \\ 7 & 12 \\ 5 & 4 \\ 12 & 5 \end{bmatrix}$ $S = \begin{bmatrix} F & G \\ 12 & 7 & 5 \end{bmatrix}$	4	zeros unambigu B1 for 4 i B1 for 12	ny correct diagran where needed ously n correct place in correct place and 7 in correct place	and labelled
		(ii)	28	1ft	Correct of	r ft from <i>their</i> diagr	am
10	(a) ((i)	20	1			
		(iii)	$n-4 \text{ oe} n+4 \text{ oe} n+6 \text{ oe} (n-4)(n+4) - (n-6)(n+6) n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n) $	2 M1	B1 for tw ft from th implied b 36) or n^2	asimplified o correct eir algebraic express y $n^2 - 4n + 4n - 16$ - $16 - (n^2 - 36)$ e a line of algebra	ssions can be $-(n^2-6n+6n-6n)$
			- 36) or better 20	E1	With no e	rrors or omission o	f brackets
	(b)	(i)	24	1			

Page 9	Mark Schen	ne		Syllabus	Paper
	IGCSE – October/November 2012		0581	42	
	(ii) $(n-5)(n+5) - (n-7)(n+7)$ isw or $n^2 - 25 - (n^2 - 49)$ isw or $n^2 - 25 - n^2 + 49$ isw (c) $(11 \times 23) - (9 \times 25)$ 253 - 225 [= 28]		Allow alg	-5, n + 5, n - 7, n + ebraic solution from +6) - (n - 8)(n + 8)	n
(d) 4 <i>t</i> oe		1	•	simplified $(t-1)^2 - [n^2 - (t+1)^2]$) ²]
(e) $c = 2$	d = 30 52	1 1			