MARK SCHEME for the October/November 2012 series

0444 MATHEMATICS (US)

0444/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0444	23

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

anything rounding to seen or implied art

soi

Qu.	Answers	Mark	Part Marks		
1	96	2	M1 for $\frac{600 \times 2 \times 8}{100}$ oe. If zero SC1 696		
2	$\frac{1}{100} + \frac{4}{25}$ or $0.1^2 + 0.4^2$ oe	M1			
	$\frac{1}{100} + \frac{16}{100} = 0.17$ or $0.01 + 0.16 = 0.17$	M1	Independent		
3	180	2	M1 for $\frac{300 \times 12}{20}$ oe		
4	$3y - y^4$ final answer	2	B1 for 3y or $-y^4$ as part of 2 term expression		
5	88.2(0)	2	M1 for 84×1.05 oe		
6	2.5	2	M1 for relevant distance / relevant time, e.g. 250/6		
7	4	2	B1 for 1.8 seen		
8	$x \ge -2$ or $-2 \le x$ oe	2	B1 for $-7 + 3 \le 2x$ oe or better		
9	Correct working seen	M1 M1	Correct step Correct step		
10	$4w^{64}$	2	B1 for $4w^n$ or kw^{64}		
11	(6, 2)	1,1	B1, B1 If B0, M1 for (2, -1) + (4, 3) soi SC1 for <i>B</i> (10, 5)		
12	40 6	2	B1 for one correct		
13 (a)	(i) $\frac{20}{100}$ oe (ii) $\frac{90}{100}$ oe	1			
	(ii) $\frac{90}{100}$ oe	1			
(b)	80	1			

Page	3	Mark Sche	eme		Syllabus	Paper	
ruge	Page 3 Mark Scher IGCSE – October/Nov			12	0444	23	
					••••		
14	3, -3 c	r ±3	3	M1 for $y = k / \sqrt{x}$ oe A1 for 18			
15	3600		3	M2 for 4 × 900 oe B1 for figs 36			
16	$\sqrt{\frac{\pi x^2 - A}{\pi}}$ oe		3	M1 for one correct move M1 for second correct move M1 for third correct move			
17 (a)	150n		1				
(b)	3, 4, 6,	7	2	B1 for 3 out of 4 correct or 3 4 5 6 7			
18	$10r^2$ ca	ao WWW	3	B1 for $\left(\frac{\theta}{360}\right) = \frac{4r}{2 \times \pi 5r}$			
				M1 for $\frac{1}{2}$	$\frac{4r}{2\pi5r}\times(5r)^2\pi$		
19 (a)	$\frac{1}{3}(c-a)$	/) oe	2	M1 for $\overrightarrow{DC} = c - d$ oe or correct route			
19 (a) (b)	$\frac{1}{3}c + \frac{2}{3}$	d oe	2ft	Their (a) + <i>d</i> simplified M1 for any correct route from O to E stated			
20 (a)	$\frac{x}{x-1}$ f	inal answer	2	M1 for $\frac{1+x-1}{x-1}$ oe			
(b)	$\frac{23-2x}{12}$	-	3	M1 for two correct algebraic fractions with a common denominator of 12M1 for correctly collecting their termsM1 for dealing correctly with the 1			
21	h+4 $h+5$		4	B2 for $(h-5)(h+4)$ seen B1 for $(h-5)(h+5)$ If B2 not scored then SC1 for $(h+a)(h+b)$ where $a + b = -1$ or $ab = -20$			
22 (a)	0.5		2	M1 for $\frac{\sin A}{15} = \frac{0.2}{6}$ oe or better			
(b)	150		2	B1 for 30 seen			
23 (a)	43		2	M1 for $g(11)$ or $4[4(3) - 1] - 1$			
(b)	12x + 2	:	2	M1 for $3(4x - 1) + 5$			
(c)	38		1				

Page 4		Mark Scheme			Syllabus	Paper
	IGCSE – October/Nov		vember 2012		0444	23
24 (a)	7		3		$^{2} + 2^{2} + 3^{2}$ or better r one of $6^{2} + 2^{2}$ or	
(b)	36+6-	√ <u>13</u>	3	6×3+6>	orrect area statement $<2 + \frac{2 \times 3}{2} \times 2 + 6 \times \sqrt{2}$ or two correct areas	